题名 | Highly Efficient Aligned Ion-Conducting Network and Interface Chemistries for Depolarized All-Solid-State Lithium Metal Batteries |
作者 | |
通讯作者 | Lin,Meng |
发表日期 | 2024-12-01
|
DOI | |
发表期刊 | |
ISSN | 2311-6706
|
EISSN | 2150-5551
|
卷号 | 16期号:1 |
摘要 | Improving the long-term cycling stability and energy density of all-solid-state lithium (Li)-metal batteries (ASSLMBs) at room temperature is a severe challenge because of the notorious solid–solid interfacial contact loss and sluggish ion transport. Solid electrolytes are generally studied as two-dimensional (2D) structures with planar interfaces, showing limited interfacial contact and further resulting in unstable Li/electrolyte and cathode/electrolyte interfaces. Herein, three-dimensional (3D) architecturally designed composite solid electrolytes are developed with independently controlled structural factors using 3D printing processing and post-curing treatment. Multiple-type electrolyte films with vertical-aligned micro-pillar (p-3DSE) and spiral (s-3DSE) structures are rationally designed and developed, which can be employed for both Li metal anode and cathode in terms of accelerating the Li transport within electrodes and reinforcing the interfacial adhesion. The printed p-3DSE delivers robust long-term cycle life of up to 2600 cycles and a high critical current density of 1.92 mA cm. The optimized electrolyte structure could lead to ASSLMBs with a superior full-cell areal capacity of 2.75 mAh cm (LFP) and 3.92 mAh cm (NCM811). This unique design provides enhancements for both anode and cathode electrodes, thereby alleviating interfacial degradation induced by dendrite growth and contact loss. The approach in this study opens a new design strategy for advanced composite solid polymer electrolytes in ASSLMBs operating under high rates/capacities and room temperature. [Figure not available: see fulltext.] |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
Scopus记录号 | 2-s2.0-85182251421
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:7
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/701277 |
专题 | 工学院_机械与能源工程系 工学院_碳中和能源研究院 |
作者单位 | 1.Shenzhen Key Laboratory of Advanced Energy Storage,Southern University of Science and Technology,Shenzhen,518055,China 2.Department of Mechanical and Energy Engineering,Southern University of Science and Technology,Shenzhen,518055,China 3.SUSTech Energy Institute for Carbon Neutrality,Southern University of Science and Technology,Shenzhen,518055,China 4.Department of Mechanical and Aerospace Engineering,Hong Kong University of Science and Technology,Kowloon,997077,Hong Kong 5.HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute,Shenzhen,Futian,China |
第一作者单位 | 南方科技大学; 机械与能源工程系; 碳中和能源研究院 |
通讯作者单位 | 南方科技大学; 机械与能源工程系; 碳中和能源研究院 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Mu,Yongbiao,Yu,Shixiang,Chen,Yuzhu,et al. Highly Efficient Aligned Ion-Conducting Network and Interface Chemistries for Depolarized All-Solid-State Lithium Metal Batteries[J]. Nano-Micro Letters,2024,16(1).
|
APA |
Mu,Yongbiao.,Yu,Shixiang.,Chen,Yuzhu.,Chu,Youqi.,Wu,Buke.,...&Zeng,Lin.(2024).Highly Efficient Aligned Ion-Conducting Network and Interface Chemistries for Depolarized All-Solid-State Lithium Metal Batteries.Nano-Micro Letters,16(1).
|
MLA |
Mu,Yongbiao,et al."Highly Efficient Aligned Ion-Conducting Network and Interface Chemistries for Depolarized All-Solid-State Lithium Metal Batteries".Nano-Micro Letters 16.1(2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论