中文版 | English
题名

Short-term wind power prediction method based on CEEMDAN-GWO-Bi-LSTM

作者
通讯作者Kou,Lei
发表日期
2024-06-01
DOI
发表期刊
EISSN
2352-4847
卷号11页码:1487-1502
摘要
In order to improve the short-term prediction accuracy of wind power and provide the basis for power grid dispatching, a complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) -grey wolf optimization (GWO) -bidirectional long short-term memory network (Bi-LSTM) prediction model is proposed to predict the short-term output power of wind farms. Firstly, the original wind power data is preprocessed, and then the original wind power data is decomposed into components that are easy to extract features by using CEEMDAN. The Bi-LSTM prediction model is established for each component, and then the grey wolf optimization algorithm is used to optimize the parameters of the Bi-LSTM model. The optimized hyperparameters are brought into the Bi-LSTM model to output the prediction results of each component. Finally, the prediction results of each component are superimposed and reconstructed to obtain the final prediction results of wind power. The simulation analysis of the power data of a wind farm in Gansu Province shows that the CEEMDAN-GWO-Bi-LSTM model has better accuracy in short-term wind power prediction.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
Scopus记录号
2-s2.0-85182884668
来源库
Scopus
引用统计
被引频次[WOS]:7
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/701292
专题工学院_机械与能源工程系
作者单位
1.School of Electrical Engineering,Changchun Institute of Technology,Changchun,130012,China
2.Institute of Oceanographic Instrumentation,Qilu University of Technology (Shandong Academy of Sciences),Qingdao,266075,China
3.Department of Mechanical and Energy Engineering,Southern University of Science and Technology,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Sun,Hongbin,Cui,Qing,Wen,Jingya,et al. Short-term wind power prediction method based on CEEMDAN-GWO-Bi-LSTM[J]. Energy Reports,2024,11:1487-1502.
APA
Sun,Hongbin,Cui,Qing,Wen,Jingya,Kou,Lei,&Ke,Wende.(2024).Short-term wind power prediction method based on CEEMDAN-GWO-Bi-LSTM.Energy Reports,11,1487-1502.
MLA
Sun,Hongbin,et al."Short-term wind power prediction method based on CEEMDAN-GWO-Bi-LSTM".Energy Reports 11(2024):1487-1502.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Sun,Hongbin]的文章
[Cui,Qing]的文章
[Wen,Jingya]的文章
百度学术
百度学术中相似的文章
[Sun,Hongbin]的文章
[Cui,Qing]的文章
[Wen,Jingya]的文章
必应学术
必应学术中相似的文章
[Sun,Hongbin]的文章
[Cui,Qing]的文章
[Wen,Jingya]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。