中文版 | English
题名

CoPE: Composition-based Poincaré embeddings for link prediction in knowledge graphs

作者
通讯作者Zhang,Defu
发表日期
2024-03-01
DOI
发表期刊
ISSN
0020-0255
卷号662
摘要
Knowledge graph (KG) embedding methods predict missing links by computing the similarities between entities. The existing embedding methods are designed with either shallow or deep architectures. Shallow methods are scalable to large KGs but are limited in capturing fine-grained semantics. Deep methods can capture rich semantic interactions, but they require numerous model parameters. This study proposes a novel embedding model that effectively combines the strengths of both shallow and deep models. In particular, the proposed model adopts the design principles of shallow models and incorporates an expressive compositional operator inspired by deep models. This approach maintains the scalability while significantly enhancing the expressive capacity of the proposed model. Moreover, the proposed model learns embeddings using the Poincaré ball model of hyperbolic geometry to preserve the hierarchies between entities. The experimental results demonstrated the effectiveness of learning Poincaré embeddings with an expressive compositional operator. Notably, a substantial improvement of 2.4% in the Mean Reciprocal Rank (MRR) and a 1.4% improvement in hit@1 was observed on the CoDEx-m and CoDEx-s datasets, respectively, when compared to the current state-of-the-art methods. The proposed model was implemented using PyTorch 1.8.1, and experiments were conducted on a server with an NVIDIA GeForce RTX 2080 Ti GPU.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85184025286
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/701373
专题工学院_计算机科学与工程系
作者单位
1.School of Informatics,Xiamen University,Xiamen,Fujian,361005,China
2.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,Guangdong,518000,China
3.Department of Mathematics,COMSATS University,Islamabad,44000,Pakistan
4.Dale E. and Sarah Ann Fowler School of Engineering,Chapman University,United States
5.Department of Computer Science,University of York,York,YO10 5DD,United Kingdom
6.Shenzhen Key Laboratory for High Performance Data Mining,Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,Shenzhen,518055,China
第一作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zeb,Adnan,Saif,Summaya,Chen,Junde,et al. CoPE: Composition-based Poincaré embeddings for link prediction in knowledge graphs[J]. Information Sciences,2024,662.
APA
Zeb,Adnan,Saif,Summaya,Chen,Junde,Yu,James Jianqiao,Jiang,Qingshan,&Zhang,Defu.(2024).CoPE: Composition-based Poincaré embeddings for link prediction in knowledge graphs.Information Sciences,662.
MLA
Zeb,Adnan,et al."CoPE: Composition-based Poincaré embeddings for link prediction in knowledge graphs".Information Sciences 662(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zeb,Adnan]的文章
[Saif,Summaya]的文章
[Chen,Junde]的文章
百度学术
百度学术中相似的文章
[Zeb,Adnan]的文章
[Saif,Summaya]的文章
[Chen,Junde]的文章
必应学术
必应学术中相似的文章
[Zeb,Adnan]的文章
[Saif,Summaya]的文章
[Chen,Junde]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。