中文版 | English
题名

QIENet: Quantitative irradiance estimation network using recurrent neural network based on satellite remote sensing data

作者
通讯作者Chen,Yuntian
发表日期
2024-03-01
DOI
发表期刊
ISSN
1569-8432
EISSN
1872-826X
卷号127
摘要
Global horizontal irradiance (GHI) plays a vital role in estimating solar energy resources, which are used to generate sustainable green energy. In order to estimate GHI with high spatial resolution, a quantitative irradiance estimation network, named QIENet, is proposed. Specifically, the temporal and spatial characteristics of remote sensing data of the satellite Himawari-8 are extracted and fused by recurrent neural network (RNN) and convolution operation, respectively. Not only remote sensing data, but also GHI-related time information (hour, day, and month) and geographical information (altitude, longitude, and latitude), are used as the inputs of QIENet. The satellite spectral channels B07 and B11–B15 and time are recommended as model inputs for QIENet according to the spatial distributions of annual solar energy. Meanwhile, QIENet is able to capture the impact of various clouds on hourly GHI estimates. More importantly, QIENet does not overestimate ground observations and can also reduce RMSE by 27.51%/18.00%, increase R by 20.17%/9.42%, and increase r by 8.69%/3.54% compared with ERA5/NSRDB. Furthermore, QIENet is capable of providing a high-fidelity hourly GHI database with spatial resolution 0.02°×0.02° (approximately 2km×2km) for many applied energy fields.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
第一
Scopus记录号
2-s2.0-85182890421
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/701395
专题工学院_环境科学与工程学院
作者单位
1.School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Peng Cheng Laboratory,Shenzhen,518000,China
3.Ningbo Institute of Digital Twin,Eastern Institute of Technology,Ningbo,315200,China
4.Department of Civil and Environmental Engineering,National University of Singapore,Singapore,117576,Singapore
5.Beijing Kingtansin Technology Company Limited,Beijing,100000,China
第一作者单位环境科学与工程学院
第一作者的第一单位环境科学与工程学院
推荐引用方式
GB/T 7714
Nie,Longfeng,Chen,Yuntian,Zhang,Dongxiao,et al. QIENet: Quantitative irradiance estimation network using recurrent neural network based on satellite remote sensing data[J]. International Journal of Applied Earth Observation and Geoinformation,2024,127.
APA
Nie,Longfeng,Chen,Yuntian,Zhang,Dongxiao,Liu,Xinyue,&Yuan,Wentian.(2024).QIENet: Quantitative irradiance estimation network using recurrent neural network based on satellite remote sensing data.International Journal of Applied Earth Observation and Geoinformation,127.
MLA
Nie,Longfeng,et al."QIENet: Quantitative irradiance estimation network using recurrent neural network based on satellite remote sensing data".International Journal of Applied Earth Observation and Geoinformation 127(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Nie,Longfeng]的文章
[Chen,Yuntian]的文章
[Zhang,Dongxiao]的文章
百度学术
百度学术中相似的文章
[Nie,Longfeng]的文章
[Chen,Yuntian]的文章
[Zhang,Dongxiao]的文章
必应学术
必应学术中相似的文章
[Nie,Longfeng]的文章
[Chen,Yuntian]的文章
[Zhang,Dongxiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。