中文版 | English
题名

Deep mechanism reduction (DeePMR) method for fuel chemical kinetics

作者
通讯作者Zhang,Tianhan
发表日期
2024-03-01
DOI
发表期刊
ISSN
0010-2180
EISSN
1556-2921
卷号261
摘要
Fuel chemistry represents a typical complex system involving thousands of intermediate species and elementary reactions. Traditional mechanism reduction methods, such as sensitivity analysis and graph-based approaches, fail to explore global correlations of the sub-systems, thereby compromising their efficiency and accuracy. A novel machine learning-based approach called deep mechanism reduction (DeePMR) has been developed to address this issue. The current method transforms mechanism reduction into an optimization problem in the combinatorial space of chemical species while mitigating the curse of dimensionality inherent in the high-dimensional space. We propose an iterative sampling–training–predicting strategy combining deep neural networks with genetic algorithms to learn the landscape of the combinatorial space and locate the targeted subspace. Applying DeePMR to fuel chemistry mechanisms has led to much more compact mechanisms than traditional methods, including directed relation graph (DRG) or path flux analysis (PFA) methods, with three to four orders of magnitude acceleration in numerical simulation. In addition, reduced mechanisms by DeePMR indicate a principal-satellite formulation for constructing chemical reaction mechanisms, providing a straightforward yet effective alternative to hierarchy-based construction methods. The DeePMR method provides a general framework for model reduction across various fields.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85181778454
来源库
Scopus
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/701417
专题工学院_力学与航空航天工程系
作者单位
1.Institute of Natural Sciences,School of Mathematical Sciences,MOE-LSC and Qing Yuan Research Institute,Shanghai Jiao Tong University,Shanghai,200240,China
2.Shanghai Center for Brain Science and Brain-Inspired Technology,Shanghai,200240,China
3.AI for Science Institute,Beijing,100080,China
4.Center for Machine Learning Research,School of Mathematical Sciences,Peking University,Beijing,100871,China
5.Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Guangdong,518055,China
6.School of Electronics Engineering and Computer Science,Peking University,Beijing,100871,China
通讯作者单位力学与航空航天工程系
推荐引用方式
GB/T 7714
Wang,Zhiwei,Zhang,Yaoyu,Lin,Pengxiao,et al. Deep mechanism reduction (DeePMR) method for fuel chemical kinetics[J]. Combustion and Flame,2024,261.
APA
Wang,Zhiwei.,Zhang,Yaoyu.,Lin,Pengxiao.,Zhao,Enhan.,E,Weinan.,...&Xu,Zhi Qin John.(2024).Deep mechanism reduction (DeePMR) method for fuel chemical kinetics.Combustion and Flame,261.
MLA
Wang,Zhiwei,et al."Deep mechanism reduction (DeePMR) method for fuel chemical kinetics".Combustion and Flame 261(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Zhiwei]的文章
[Zhang,Yaoyu]的文章
[Lin,Pengxiao]的文章
百度学术
百度学术中相似的文章
[Wang,Zhiwei]的文章
[Zhang,Yaoyu]的文章
[Lin,Pengxiao]的文章
必应学术
必应学术中相似的文章
[Wang,Zhiwei]的文章
[Zhang,Yaoyu]的文章
[Lin,Pengxiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。