中文版 | English
题名

A NEW DISCRETELY DIVERGENCE-FREE POSITIVITY-PRESERVING HIGH-ORDER FINITE VOLUME METHOD FOR IDEAL MHD EQUATIONS

作者
通讯作者Wu,Kailiang
发表日期
2024-02-01
DOI
发表期刊
ISSN
1064-8275
EISSN
1095-7197
卷号46期号:1页码:A50-A79
摘要
This paper proposes and analyzes a novel efficient high-order finite volume method for the ideal magnetohydrodynamics (MHD). As a distinctive feature, the method simultaneously preserves two critical physical constraints: a discretely divergence-free (DDF) constraint on the magnetic field and the positivity-preserving (PP) property, which ensures the positivity of density, pressure, and internal energy. To enforce the DDF condition in each cell, we design a new discrete projection approach that projects the reconstructed point values at the cell interface into a DDF space, without using any approximation polynomials. This projection method is highly efficient, easy to implement, and particularly suitable for the high-order finite volume methods that return only the point values (no explicit approximation polynomials) in the reconstruction. Moreover, we also develop a new finite volume framework for constructing provably PP schemes for the ideal MHD system. The framework comprises the discrete projection technique, a suitable approximation to the Godunov-Powell source terms, and a simple PP limiter. We provide rigorous analysis of the PP property of the proposed finite volume method, demonstrating that the DDF condition and the proper approximation to the source terms eliminate the impact of magnetic divergence terms on the PP property. The analysis is challenging due to the internal energy function's nonlinearity and the intricate relationship between the DDF and PP properties. To address these challenges, we adopt the recently developed geometric quasilinearization approach [K. Wu and C.-W. Shu, SIAM Rev., 65 (2023), pp. 1031-1073], which transforms a nonlinear constraint into a family of linear constraints. Finally, we validate the effectiveness of the proposed method through several benchmark and demanding numerical examples. The results demonstrate that the proposed method is robust, accurate, and highly effective, confirming the significance of the proposed DDF projection and PP techniques.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
ESI学科分类
MATHEMATICS
Scopus记录号
2-s2.0-85182671063
来源库
Scopus
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/701495
专题理学院_数学系
深圳国际数学中心(杰曼诺夫数学中心)(筹)
作者单位
1.SUSTech International Center for Mathematics,Department of Mathematics,Southern University of Science and Technology,Shenzhen,518055,China
2.Department of Mathematics,SUSTech International Center for Mathematics,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位数学系;  深圳国际数学中心(杰曼诺夫数学中心)(筹)
通讯作者单位数学系;  深圳国际数学中心(杰曼诺夫数学中心)(筹)
第一作者的第一单位数学系;  深圳国际数学中心(杰曼诺夫数学中心)(筹)
推荐引用方式
GB/T 7714
Ding,Shengrong,Wu,Kailiang. A NEW DISCRETELY DIVERGENCE-FREE POSITIVITY-PRESERVING HIGH-ORDER FINITE VOLUME METHOD FOR IDEAL MHD EQUATIONS[J]. SIAM Journal on Scientific Computing,2024,46(1):A50-A79.
APA
Ding,Shengrong,&Wu,Kailiang.(2024).A NEW DISCRETELY DIVERGENCE-FREE POSITIVITY-PRESERVING HIGH-ORDER FINITE VOLUME METHOD FOR IDEAL MHD EQUATIONS.SIAM Journal on Scientific Computing,46(1),A50-A79.
MLA
Ding,Shengrong,et al."A NEW DISCRETELY DIVERGENCE-FREE POSITIVITY-PRESERVING HIGH-ORDER FINITE VOLUME METHOD FOR IDEAL MHD EQUATIONS".SIAM Journal on Scientific Computing 46.1(2024):A50-A79.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ding,Shengrong]的文章
[Wu,Kailiang]的文章
百度学术
百度学术中相似的文章
[Ding,Shengrong]的文章
[Wu,Kailiang]的文章
必应学术
必应学术中相似的文章
[Ding,Shengrong]的文章
[Wu,Kailiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。