题名 | Deep Industrial Image Anomaly Detection: A Survey |
作者 | |
通讯作者 | Zheng,Feng |
发表日期 | 2024-02-01
|
DOI | |
发表期刊 | |
ISSN | 2731-538X
|
EISSN | 2731-5398
|
卷号 | 21期号:1页码:104-135 |
摘要 | The recent rapid development of deep learning has laid a milestone in industrial image anomaly detection (IAD). In this paper, we provide a comprehensive review of deep learning-based image anomaly detection techniques, from the perspectives of neural network architectures, levels of supervision, loss functions, metrics and datasets. In addition, we extract the promising setting from industrial manufacturing and review the current IAD approaches under our proposed setting. Moreover, we highlight several opening challenges for image anomaly detection. The merits and downsides of representative network architectures under varying supervision are discussed. Finally, we summarize the research findings and point out future research directions. More resources are available at https://github.com/M-3LAB/awesome-industrial-anomaly-detection . |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
Scopus记录号 | 2-s2.0-85182489543
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:40
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/701500 |
专题 | 工学院_斯发基斯可信自主研究院 |
作者单位 | 1.Research Institute of Trustworthy Autonomous Systems,Southern University of Science and Technology,Shenzhen,518055,China 2.NICE Group,University of Surrey,Guildford,GU2 7YX,United Kingdom 3.Youtu Lab,Tencent,Shanghai,200233,China 4.NICE Group,Bielefeld University,Bielefeld,33619,Germany |
第一作者单位 | 斯发基斯可信自主系统研究院 |
通讯作者单位 | 斯发基斯可信自主系统研究院 |
第一作者的第一单位 | 斯发基斯可信自主系统研究院 |
推荐引用方式 GB/T 7714 |
Liu,Jiaqi,Xie,Guoyang,Wang,Jinbao,et al. Deep Industrial Image Anomaly Detection: A Survey[J]. Machine Intelligence Research,2024,21(1):104-135.
|
APA |
Liu,Jiaqi.,Xie,Guoyang.,Wang,Jinbao.,Li,Shangnian.,Wang,Chengjie.,...&Jin,Yaochu.(2024).Deep Industrial Image Anomaly Detection: A Survey.Machine Intelligence Research,21(1),104-135.
|
MLA |
Liu,Jiaqi,et al."Deep Industrial Image Anomaly Detection: A Survey".Machine Intelligence Research 21.1(2024):104-135.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论