中文版 | English
题名

Multi-style spatial attention module for cortical cataract classification in AS-OCT image with supervised contrastive learning

作者
通讯作者Higashita,Risa
发表日期
2024-02-01
DOI
发表期刊
ISSN
0169-2607
EISSN
1872-7565
卷号244
摘要
Background and Objective: Precise cortical cataract (CC) classification plays a significant role in early cataract intervention and surgery. Anterior segment optical coherence tomography (AS-OCT) images have shown excellent potential in cataract diagnosis. However, due to the complex opacity distributions of CC, automatic AS-OCT-based CC classification has been rarely studied. In this paper, we aim to explore the opacity distribution characteristics of CC as clinical priori to enhance the representational capability of deep convolutional neural networks (CNNs) in CC classification tasks. Methods: We propose a novel architectural unit, Multi-style Spatial Attention module (MSSA), which recalibrates intermediate feature maps by exploiting diverse clinical contexts. MSSA first extracts the clinical style context features with Group-wise Style Pooling (GSP), then refines the clinical style context features with Local Transform (LT), and finally executes group-wise feature map recalibration via Style Feature Recalibration (SFR). MSSA can be easily integrated into modern CNNs with negligible overhead. Results: The extensive experiments on a CASIA2 AS-OCT dataset and two public ophthalmic datasets demonstrate the superiority of MSSA over state-of-the-art attention methods. The visualization analysis and ablation study are conducted to improve the explainability of MSSA in the decision-making process. Conclusions: Our proposed MSSANet utilized the opacity distribution characteristics of CC to enhance the representational power and explainability of deep convolutional neural network (CNN) and improve the CC classification performance. Our proposed method has the potential in the early clinical CC diagnosis.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85182220827
来源库
Scopus
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/701508
专题工学院_计算机科学与工程系
工学院_斯发基斯可信自主研究院
作者单位
1.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Research Institute of Trustworthy Autonomous Systems,Southern University of Science and Technology,Shenzhen,518055,China
3.TOMEY Corporation,Nagoya,4510051,Japan
4.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Southern University of Science and Technology,Shenzhen,518055,China
5.Singapore Eye Research Institute,169856,Singapore
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Xiao,Zunjie,Zhang,Xiaoqing,Zheng,Bofang,et al. Multi-style spatial attention module for cortical cataract classification in AS-OCT image with supervised contrastive learning[J]. Computer Methods and Programs in Biomedicine,2024,244.
APA
Xiao,Zunjie,Zhang,Xiaoqing,Zheng,Bofang,Guo,Yitong,Higashita,Risa,&Liu,Jiang.(2024).Multi-style spatial attention module for cortical cataract classification in AS-OCT image with supervised contrastive learning.Computer Methods and Programs in Biomedicine,244.
MLA
Xiao,Zunjie,et al."Multi-style spatial attention module for cortical cataract classification in AS-OCT image with supervised contrastive learning".Computer Methods and Programs in Biomedicine 244(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xiao,Zunjie]的文章
[Zhang,Xiaoqing]的文章
[Zheng,Bofang]的文章
百度学术
百度学术中相似的文章
[Xiao,Zunjie]的文章
[Zhang,Xiaoqing]的文章
[Zheng,Bofang]的文章
必应学术
必应学术中相似的文章
[Xiao,Zunjie]的文章
[Zhang,Xiaoqing]的文章
[Zheng,Bofang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。