题名 | On the prevalence of the periodicity of maximizing measures |
作者 | |
通讯作者 | Ding,Jian |
发表日期 | 2024-02-01
|
DOI | |
发表期刊 | |
ISSN | 0001-8708
|
EISSN | 1090-2082
|
卷号 | 438 |
摘要 | For a continuous map T:X→X on a compact metric space (X,d), we say that a function f:X→R has the property P if its time averages along forward orbits of T are maximized at a periodic orbit. In this paper, we prove that for the one-sided full shift on two symbols, the property P is prevalent (in the sense of Hunt–Sauer–Yorke) in spaces of Lipschitz functions with respect to metrics with mildly fast decaying rate on the diameters of cylinder sets. This result is a strengthening of [3, Theorem A], confirms the prediction mentioned in the ICM proceeding contribution of J. Bochi ([1, Section 1]) suggested by experimental evidence, and is another step towards the Hunt–Ott conjectures in the area of ergodic optimization. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
ESI学科分类 | MATHEMATICS
|
Scopus记录号 | 2-s2.0-85182004918
|
来源库 | Scopus
|
引用统计 | |
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/701513 |
专题 | 理学院_数学系 深圳国际数学中心(杰曼诺夫数学中心)(筹) |
作者单位 | 1.School of Mathematical Sciences,Peking University,Beijing,100871,China 2.School of Mathematical Sciences,Beijing International Center for Mathematical Research,Peking University,Beijing,100871,China 3.Department of Mathematics,SUSTech International Center for Mathematics,Southern University of Science and Technology,Shenzhen,Guangdong,518055,China |
推荐引用方式 GB/T 7714 |
Ding,Jian,Li,Zhiqiang,Zhang,Yiwei. On the prevalence of the periodicity of maximizing measures[J]. Advances in Mathematics,2024,438.
|
APA |
Ding,Jian,Li,Zhiqiang,&Zhang,Yiwei.(2024).On the prevalence of the periodicity of maximizing measures.Advances in Mathematics,438.
|
MLA |
Ding,Jian,et al."On the prevalence of the periodicity of maximizing measures".Advances in Mathematics 438(2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论