中文版 | English
题名

High-Order Accurate Entropy Stable Schemes for Relativistic Hydrodynamics with General Synge-Type Equation of State

作者
通讯作者Ding,Shengrong
发表日期
2024-02-01
DOI
发表期刊
ISSN
0885-7474
EISSN
1573-7691
卷号98期号:2
摘要
All the existing entropy stable (ES) schemes for relativistic hydrodynamics (RHD) in the literature were restricted to the ideal equation of state (EOS), which however is often a poor approximation for most relativistic flows due to its inconsistency with the relativistic kinetic theory. This paper develops high-order ES finite difference schemes for RHD with general Synge-type EOS, which encompasses a range of special EOSs. We first establish an entropy pair for the RHD equations with general Synge-type EOS in any space dimensions. We rigorously prove that the found entropy function is strictly convex and derive the associated entropy variables, laying the foundation for designing entropy conservative (EC) and ES schemes. Due to relativistic effects, one cannot explicitly express primitive variables, fluxes, and entropy variables in terms of conservative variables. Consequently, this highly complicates the analysis of the entropy structure of the RHD equations, the investigation of entropy convexity, and the construction of EC numerical fluxes. By using a suitable set of parameter variables, we construct novel two-point EC fluxes in a unified form for general Synge-type EOS. We obtain high-order EC schemes through linear combinations of the two-point EC fluxes. Arbitrarily high-order accurate ES schemes are achieved by incorporating dissipation terms into the EC schemes, based on (weighted) essentially non-oscillatory reconstructions. Additionally, we derive the general dissipation matrix for general Synge-type EOS based on the scaled eigenvectors of the RHD system. We also define a suitable average of the dissipation matrix at the cell interfaces to ensure that the resulting ES schemes can resolve stationary contact discontinuities accurately. Several numerical examples are provided to validate the accuracy and effectiveness of our schemes for RHD with four special EOSs.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
ESI学科分类
MATHEMATICS
Scopus记录号
2-s2.0-85181848767
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/701516
专题理学院_数学系
深圳国际数学中心(杰曼诺夫数学中心)(筹)
理学院_深圳国家应用数学中心
作者单位
1.Department of Mathematics,Southern University of Science and Technology,Shenzhen,518055,China
2.SUSTech International Center for Mathematics and Department of Mathematics,Southern University of Science and Technology,Shenzhen,518055,China
3.Department of Mathematics and SUSTech International Center for Mathematics,Southern University of Science and Technology,and National Center for Applied Mathematics Shenzhen (NCAMS),Shenzhen,518055,China
第一作者单位数学系
通讯作者单位数学系;  深圳国际数学中心(杰曼诺夫数学中心)(筹)
第一作者的第一单位数学系
推荐引用方式
GB/T 7714
Xu,Linfeng,Ding,Shengrong,Wu,Kailiang. High-Order Accurate Entropy Stable Schemes for Relativistic Hydrodynamics with General Synge-Type Equation of State[J]. Journal of Scientific Computing,2024,98(2).
APA
Xu,Linfeng,Ding,Shengrong,&Wu,Kailiang.(2024).High-Order Accurate Entropy Stable Schemes for Relativistic Hydrodynamics with General Synge-Type Equation of State.Journal of Scientific Computing,98(2).
MLA
Xu,Linfeng,et al."High-Order Accurate Entropy Stable Schemes for Relativistic Hydrodynamics with General Synge-Type Equation of State".Journal of Scientific Computing 98.2(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xu,Linfeng]的文章
[Ding,Shengrong]的文章
[Wu,Kailiang]的文章
百度学术
百度学术中相似的文章
[Xu,Linfeng]的文章
[Ding,Shengrong]的文章
[Wu,Kailiang]的文章
必应学术
必应学术中相似的文章
[Xu,Linfeng]的文章
[Ding,Shengrong]的文章
[Wu,Kailiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。