题名 | Decomposition gradient descent method for bi-objective optimisation |
作者 | |
通讯作者 | Chen,Jingjing |
发表日期 | 2024-01-22
|
DOI | |
发表期刊 | |
ISSN | 1758-0366
|
EISSN | 1758-0374
|
卷号 | 23期号:1页码:28-38 |
摘要 | Population-based decomposition methods decompose a multi-objective optimisation problem (MOP) into a set of single-objective subproblems (SOPs) and then solve them collaboratively to produce a set of Pareto optimal solutions. Most of these methods use heuristics such as genetic algorithms as their search engines. As a result, these methods are not very efficient. This paper investigates how to do a gradient search in multi-objective decomposition methods. We use the NBI-style Tchebycheff method to decompose a MOP since it is not sensitive to the scales of objectives. However, since the objectives of the resultant SOPs are non-differentiable, they cannot be directly optimised by the classical gradient methods. We propose a new gradient descent method, decomposition gradient descent (DGD), to optimise them. We study its convergence property and conduct numerical experiments to show its efficiency. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
EI入藏号 | 20240515476410
|
EI主题词 | Genetic algorithms
; Gradient methods
; Heuristic methods
; Pareto principle
; Search engines
|
EI分类号 | Computer Software, Data Handling and Applications:723
; Optimization Techniques:921.5
; Numerical Methods:921.6
|
Scopus记录号 | 2-s2.0-85183575339
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/701547 |
专题 | 工学院_系统设计与智能制造学院 |
作者单位 | 1.Department of Computer Science,City University of Hong Kong,Hong Kong 2.School of System Design and Intelligent Manufacturing,Southern University of Science and Technology,Shenzhen,518055,China |
推荐引用方式 GB/T 7714 |
Chen,Jingjing,Li,Genghui,Lin,Xi. Decomposition gradient descent method for bi-objective optimisation[J]. International Journal of Bio-Inspired Computation,2024,23(1):28-38.
|
APA |
Chen,Jingjing,Li,Genghui,&Lin,Xi.(2024).Decomposition gradient descent method for bi-objective optimisation.International Journal of Bio-Inspired Computation,23(1),28-38.
|
MLA |
Chen,Jingjing,et al."Decomposition gradient descent method for bi-objective optimisation".International Journal of Bio-Inspired Computation 23.1(2024):28-38.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论