中文版 | English
题名

Optimization-Free Test-Time Adaptation for Cross-Person Activity Recognition

作者
通讯作者Zhang,Bob
发表日期
2024-01-12
DOI
发表期刊
EISSN
2474-9567
卷号7期号:4
摘要
Human Activity Recognition (HAR) models often suffer from performance degradation in real-world applications due to distribution shifts in activity patterns across individuals. Test-Time Adaptation (TTA) is an emerging learning paradigm that aims to utilize the test stream to adjust predictions in real-time inference, which has not been explored in HAR before. However, the high computational cost of optimization-based TTA algorithms makes it intractable to run on resource-constrained edge devices. In this paper, we propose an Optimization-Free Test-Time Adaptation (OFTTA) framework for sensor-based HAR. OFTTA adjusts the feature extractor and linear classifier simultaneously in an optimization-free manner. For the feature extractor, we propose Exponential Decay Test-time Normalization (EDTN) to replace the conventional batch normalization (CBN) layers. EDTN combines CBN and Test-time batch Normalization (TBN) to extract reliable features against domain shifts with TBN's influence decreasing exponentially in deeper layers. For the classifier, we adjust the prediction by computing the distance between the feature and the prototype, which is calculated by a maintained support set. In addition, the update of the support set is based on the pseudo label, which can benefit from reliable features extracted by EDTN. Extensive experiments on three public cross-person HAR datasets and two different TTA settings demonstrate that OFTTA outperforms the state-of-the-art TTA approaches in both classification performance and computational efficiency. Finally, we verify the superiority of our proposed OFTTA on edge devices, indicating possible deployment in real applications. Our code is available at https://github.com/Claydon-Wang/OFTTA.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
Scopus记录号
2-s2.0-85182608319
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/701578
专题理学院_统计与数据科学系
作者单位
1.PAMI Research Group,Department of Computer and Information Science,University of Macau,Taipa,Macao
2.Microsoft Research Asia,Beijing,China
3.Southern University of Science and Technology,Shenzhen,Guang Dong,China
4.Nanjing Normal University,Naning,Jiang Su,China
5.Department of Statistics and Data Science,Southern University of Science and Technology,Shenzhen,Guang Dong,China
推荐引用方式
GB/T 7714
Wang,Shuoyuan,Wang,Jindong,Xi,Huajun,et al. Optimization-Free Test-Time Adaptation for Cross-Person Activity Recognition[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,2024,7(4).
APA
Wang,Shuoyuan,Wang,Jindong,Xi,Huajun,Zhang,Bob,Zhang,Lei,&Wei,Hongxin.(2024).Optimization-Free Test-Time Adaptation for Cross-Person Activity Recognition.Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,7(4).
MLA
Wang,Shuoyuan,et al."Optimization-Free Test-Time Adaptation for Cross-Person Activity Recognition".Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 7.4(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
2310.18562.pdf(2394KB)期刊论文作者接受稿限制开放CC BY-NC-SA
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Shuoyuan]的文章
[Wang,Jindong]的文章
[Xi,Huajun]的文章
百度学术
百度学术中相似的文章
[Wang,Shuoyuan]的文章
[Wang,Jindong]的文章
[Xi,Huajun]的文章
必应学术
必应学术中相似的文章
[Wang,Shuoyuan]的文章
[Wang,Jindong]的文章
[Xi,Huajun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。