中文版 | English
题名

Effects of initialization methods on the performance of multi-objective evolutionary algorithms

作者
通讯作者Hisao Ishibuchi; Qingfu Zhang
DOI
发表日期
2023-10-01
会议名称
Proc. of 2023 IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC 2023)
ISSN
1062-922X
ISBN
979-8-3503-3703-7
会议录名称
页码
1168-1175
会议日期
October 1-4, 2023
会议地点
Maui, Hawaii, USA
摘要
Population initialization is always needed in evolutionary multi-objective optimization (EMO) algorithms. Intuitively, a well-designed initialization method can help facilitate the evolutionary process and improve the performance of EMO algorithms. However, very few studies have investigated the effects of initialization methods on the performance of EMO algorithms. Many existing EMO algorithms randomly generate an initial population to start the evolutionary process. To fill this research gap and attract more attention from EMO researchers to this important yet under-explored issue, in this paper, we examine the effects of various initialization methods that may become promising alternatives to the commonly-used random initialization method. Each initialization method is evaluated through computational experiments on test problems of various sizes with 5–1000 decision variables. Experimental results clearly demonstrate the advantage of well-designed initialization methods over the random initialization method. This study provides useful insights into EMO algorithm design and motivates further research on population initialization.
关键词
学校署名
通讯
语种
英语
相关链接[IEEE记录]
来源库
人工提交
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10394232
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/701599
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong
2.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Cheng Gong,Lie Meng Pang,Yang Nan,et al. Effects of initialization methods on the performance of multi-objective evolutionary algorithms[C],2023:1168-1175.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cheng Gong]的文章
[Lie Meng Pang]的文章
[Yang Nan]的文章
百度学术
百度学术中相似的文章
[Cheng Gong]的文章
[Lie Meng Pang]的文章
[Yang Nan]的文章
必应学术
必应学术中相似的文章
[Cheng Gong]的文章
[Lie Meng Pang]的文章
[Yang Nan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。