中文版 | English
题名

How to find a large solution set to cover the entire Pareto front in evolutionary multi-objective optimization

作者
通讯作者Hisao Ishibuchi
DOI
发表日期
2023-10-01
会议名称
Proc. of 2023 IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC 2023)
ISSN
1062-922X
ISBN
979-8-3503-3703-7
会议录名称
页码
1188-1194
会议日期
October 1-4, 2023
会议地点
Maui, Hawaii, USA
摘要
Recently, it has been pointed out in many studies that the performance of evolutionary multi-objective optimization (EMO) algorithms can be improved by selecting solutions from all examined solutions stored in an unbounded external archive. This is because in general the final population is not the best subset of the examined solutions. To obtain a good final solution set in such a solution selection framework, subset selection from a large candidate set (i.e., all examined solutions) has been studied. However, since good subsets cannot be obtained from poor candidate sets, a more important issue is how to find a good candidate set, which is the focus of this paper. In this paper, we first visually demonstrate that the entire Pareto front is not covered by the examined solutions through computational experiments using MOEA/D, NSGA-III and SMS-EMOA on DTLZ test problems. That is, the examined solution set stored in the unbounded archive has some large holes (i.e., some uncovered area of the Pareto front). Next, to evaluate the quality of the examined solution set (i.e., to measure the size of the largest hole), we propose the use of a variant of the inverted generational distance (IGD) indicator. Then, we propose a simple modification of EMO algorithms to improve the quality of the examined solution set. Finally, we demonstrate the effectiveness of the proposed modification through computational experiments.
关键词
学校署名
第一 ; 通讯
相关链接[IEEE记录]
来源库
人工提交
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10394307
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/701600
专题南方科技大学
工学院_计算机科学与工程系
作者单位
Southern University of Science and Technology
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Lie Meng Pang,Yang Nan,Hisao Ishibuchi. How to find a large solution set to cover the entire Pareto front in evolutionary multi-objective optimization[C],2023:1188-1194.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lie Meng Pang]的文章
[Yang Nan]的文章
[Hisao Ishibuchi]的文章
百度学术
百度学术中相似的文章
[Lie Meng Pang]的文章
[Yang Nan]的文章
[Hisao Ishibuchi]的文章
必应学术
必应学术中相似的文章
[Lie Meng Pang]的文章
[Yang Nan]的文章
[Hisao Ishibuchi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。