中文版 | English
题名

Randomness-Enhanced Expressivity of Quantum Neural Networks

作者
发表日期
2024-01-05
DOI
发表期刊
ISSN
0031-9007
EISSN
1079-7114
卷号132期号:1
摘要
As a hybrid of artificial intelligence and quantum computing, quantum neural networks (QNNs) have gained significant attention as a promising application on near-term, noisy intermediate-scale quantum devices. Conventional QNNs are described by parametrized quantum circuits, which perform unitary operations and measurements on quantum states. In this Letter, we propose a novel approach to enhance the expressivity of QNNs by incorporating randomness into quantum circuits. Specifically, we introduce a random layer, which contains single-qubit gates sampled from a trainable ensemble pooling. The prediction of QNN is then represented by an ensemble average over a classical function of measurement outcomes. We prove that our approach can accurately approximate arbitrary target operators using Uhlmann's theorem for majorization, which enables observable learning. Our proposal is demonstrated with extensive numerical experiments, including observable learning, Rényi entropy measurement, and image recognition. We find the expressivity of QNNs is enhanced by introducing randomness for multiple learning tasks, which could have broad application in quantum machine learning.
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
ESI学科分类
PHYSICS
Scopus记录号
2-s2.0-85182810163
来源库
Scopus
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/701612
专题量子科学与工程研究院
作者单位
1.Department of Physics,Fudan University,Shanghai,200438,China
2.State Key Laboratory of Surface Physics,Key Laboratory of Micro and Nano Photonic Structures (MOE),Institute for Nanoelectronic Devices and Quantum Computing,Fudan University,Shanghai,200438,China
3.Shanghai Qi Zhi Institute,Shanghai,AI Tower, Xuhui District,200232,China
4.Shenzhen Institute for Quantum Science and Engineering,Southern University of Science and Technology,Shenzhen,Guangdong,518055,China
5.International Quantum Academy,Shenzhen,Guangdong,518048,China
6.Guangdong Provincial Key Laboratory of Quantum Science and Engineering,Southern University of Science and Technology,Shenzhen,Guangdong,518055,China
7.Shanghai Artificial Intelligence Laboratory,Shanghai,200232,China
8.Shanghai Research Center for Quantum Sciences,Shanghai,201315,China
推荐引用方式
GB/T 7714
Wu,Yadong,Yao,Juan,Zhang,Pengfei,et al. Randomness-Enhanced Expressivity of Quantum Neural Networks[J]. Physical Review Letters,2024,132(1).
APA
Wu,Yadong,Yao,Juan,Zhang,Pengfei,&Li,Xiaopeng.(2024).Randomness-Enhanced Expressivity of Quantum Neural Networks.Physical Review Letters,132(1).
MLA
Wu,Yadong,et al."Randomness-Enhanced Expressivity of Quantum Neural Networks".Physical Review Letters 132.1(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wu,Yadong]的文章
[Yao,Juan]的文章
[Zhang,Pengfei]的文章
百度学术
百度学术中相似的文章
[Wu,Yadong]的文章
[Yao,Juan]的文章
[Zhang,Pengfei]的文章
必应学术
必应学术中相似的文章
[Wu,Yadong]的文章
[Yao,Juan]的文章
[Zhang,Pengfei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。