中文版 | English
题名

SSiT: Saliency-guided Self-supervised Image Transformer for Diabetic Retinopathy Grading

作者
发表日期
2024
DOI
发表期刊
ISSN
2168-2194
EISSN
2168-2208
卷号PP期号:99页码:1-13
摘要
Self-supervised Learning (SSL) has been widely applied to learn image representations through exploiting unlabeled images. However, it has not been fully explored in the medical image analysis field. In this work, Saliency-guided Self-Supervised image Transformer (SSiT) is proposed for Diabetic Retinopathy (DR) grading from fundus images. We novelly introduce saliency maps into SSL, with a goal of guiding self-supervised pre-training with domain-specific prior knowledge. Specifically, two saliency-guided learning tasks are employed in SSiT: (1) Saliency-guided contrastive learning is conducted based on the momentum contrast, wherein fundus images' saliency maps are utilized to remove trivial patches from the input sequences of the momentum-updated key encoder. Thus, the key encoder is constrained to provide target representations focusing on salient regions, guiding the query encoder to capture salient features. (2) The query encoder is trained to predict the saliency segmentation, encouraging the preservation of fine-grained information in the learned representations. To assess our proposed method, four publicly-accessible fundus image datasets are adopted. One dataset is employed for pre-training, while the three others are used to evaluate the pre-trained models' performance on downstream DR grading. The proposed SSiT significantly outperforms other representative state-of-the-art SSL methods on all downstream datasets and under various evaluation settings. For example, SSiT achieves a Kappa score of 81.88% on the DDR dataset under fine-tuning evaluation, outperforming all other ViT-based SSL methods by at least 9.48%.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
Scopus记录号
2-s2.0-85184826507
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10423096
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/701618
专题工学院_电子与电气工程系
作者单位
1.Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China
2.School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
第一作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Huang,Yijin,Lyu,Junyan,Cheng,Pujin,et al. SSiT: Saliency-guided Self-supervised Image Transformer for Diabetic Retinopathy Grading[J]. IEEE Journal of Biomedical and Health Informatics,2024,PP(99):1-13.
APA
Huang,Yijin,Lyu,Junyan,Cheng,Pujin,Tam,Roger,&Tang,Xiaoying.(2024).SSiT: Saliency-guided Self-supervised Image Transformer for Diabetic Retinopathy Grading.IEEE Journal of Biomedical and Health Informatics,PP(99),1-13.
MLA
Huang,Yijin,et al."SSiT: Saliency-guided Self-supervised Image Transformer for Diabetic Retinopathy Grading".IEEE Journal of Biomedical and Health Informatics PP.99(2024):1-13.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Huang,Yijin]的文章
[Lyu,Junyan]的文章
[Cheng,Pujin]的文章
百度学术
百度学术中相似的文章
[Huang,Yijin]的文章
[Lyu,Junyan]的文章
[Cheng,Pujin]的文章
必应学术
必应学术中相似的文章
[Huang,Yijin]的文章
[Lyu,Junyan]的文章
[Cheng,Pujin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。