中文版 | English
题名

Optimizing CNN Computation Using RISC-V Custom Instruction Sets for Edge Platforms

作者
发表日期
2024
DOI
发表期刊
ISSN
0018-9340
EISSN
1557-9956
卷号73期号:5页码:1371-1384
摘要
Benefit from the custom instruction extension capabilities, RISC-V architecture can be optimized for many domain-specific applications. In this paper, we propose seven RISC-V SIMD (single instruction multiple data) custom instructions that can significantly optimize the convolution, activation and pool operations in CNN inference computation. More specifically, instruction CONV23 can greatly speed up the operation of F(2 × 2, 3 × 3). With the adoption of Winograd algorithm, the number of multiplications can be reduced from 36 to 16, and the execution time is also reduced from 140 to 21 clock cycles. These custom instructions can be executed in batch mode within the acceleration module where the immediate data can be reused, so the latency and energy overhead associated with excess memory accesses can be eliminated. Using inline assembler in C language, the custom instructions can be called and compiled together with C source code. A revised RISC-V processor, RI5CY-Accel is constructed on FPGA to accommodate these custom instructions. Revised LeNet-5, VGG16 and ResNet18 model; called LeNet-Accel, VGG16-Accel and ResNet18-Accel are also optimized based on RI5CY-Accel architecture. Benchmark experiments demonstrated that the inference of LeNet-Accel, VGG16-Accel and ResNet18-Accel based on RI5CY-Accel can greatly reduce the execution latency by over 76.6%, 88.8% and 87.1%, with the total energy consumption saving of 74.8%, 87.8% and 85.1% respectively.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85184815408
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10420491
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/701621
专题工学院_电子与电气工程系
作者单位
1.Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
2.Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada
第一作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Wang,Shihang,Wang,Xingbo,Xu,Zhiyuan,et al. Optimizing CNN Computation Using RISC-V Custom Instruction Sets for Edge Platforms[J]. IEEE Transactions on Computers,2024,73(5):1371-1384.
APA
Wang,Shihang.,Wang,Xingbo.,Xu,Zhiyuan.,Chen,Bingzhen.,Feng,Chenxi.,...&Ye,Terry Tao.(2024).Optimizing CNN Computation Using RISC-V Custom Instruction Sets for Edge Platforms.IEEE Transactions on Computers,73(5),1371-1384.
MLA
Wang,Shihang,et al."Optimizing CNN Computation Using RISC-V Custom Instruction Sets for Edge Platforms".IEEE Transactions on Computers 73.5(2024):1371-1384.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Shihang]的文章
[Wang,Xingbo]的文章
[Xu,Zhiyuan]的文章
百度学术
百度学术中相似的文章
[Wang,Shihang]的文章
[Wang,Xingbo]的文章
[Xu,Zhiyuan]的文章
必应学术
必应学术中相似的文章
[Wang,Shihang]的文章
[Wang,Xingbo]的文章
[Xu,Zhiyuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。