中文版 | English
题名

Loading Recognition for Lumbar Exoskeleton Based on Multi-Channel Surface Electromyography from Low Back Muscles

作者
发表日期
2024
DOI
发表期刊
ISSN
0018-9294
EISSN
1558-2531
卷号PP期号:99页码:1-9
摘要
Lumbar exoskeleton is an assistive robot, which can reduce the risk of injury and pain in low back muscles when lifting heavy objects. An important challenge it faces involves enhancing assistance with minimal muscle energy consumption. One of the viable solutions is to adjust the force or torque of assistance in response to changes in the load on the low back muscles. It requires accurate loading recognition, which has yet to yield satisfactory outcomes due to the limitations of available measurement tools and load classification methods. This study aimed to precisely identify muscle loading using a multi-channel surface electromyographic (sEMG) electrode array on the low back muscles, combined with a participant-specific load classification method. Ten healthy participants performed a stoop lifting task with objects of varying weights, while sEMG data was collected from the low back muscles using a 3x7 electrode array. Nineteen time segments of the lifting phase were identified, and time-domain sEMG features were extracted from each segment. Participant-specific classifiers were built using four classification algorithms to determine the object weight in each time segment, and the classification performance was evaluated using a 5-fold cross-validation method. The artificial neural network classifier achieved an impressive accuracy of up to 96%, consistently improving as the lifting phase progressed, peaking towards the end of the lifting movement. This study successfully achieves accurate recognition of load on low back muscles during the object lifting task. The obtained results hold significant potential in effectively reducing muscle energy consumption when wearing a lumbar exoskeleton.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
EI入藏号
20240715545363
EI主题词
Electrodes ; Electromyography ; Energy utilization ; Exoskeleton (Robotics) ; Loads (forces) ; Neural networks ; Time domain analysis
EI分类号
Structural Design:408 ; Biological Materials and Tissue Engineering:461.2 ; Energy Utilization:525.3 ; Robotics:731.5 ; Mathematics:921
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85184795817
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10423850
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/701626
专题工学院_深港微电子学院
作者单位
1.CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), and the SIAT Branch, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China
2.School of Microelectronics, Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Jiang,Naifu,Wang,Lin,Wang,Dashuai,et al. Loading Recognition for Lumbar Exoskeleton Based on Multi-Channel Surface Electromyography from Low Back Muscles[J]. IEEE Transactions on Biomedical Engineering,2024,PP(99):1-9.
APA
Jiang,Naifu,Wang,Lin,Wang,Dashuai,Fang,Peng,Wu,Xinyu,&Li,Guanglin.(2024).Loading Recognition for Lumbar Exoskeleton Based on Multi-Channel Surface Electromyography from Low Back Muscles.IEEE Transactions on Biomedical Engineering,PP(99),1-9.
MLA
Jiang,Naifu,et al."Loading Recognition for Lumbar Exoskeleton Based on Multi-Channel Surface Electromyography from Low Back Muscles".IEEE Transactions on Biomedical Engineering PP.99(2024):1-9.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jiang,Naifu]的文章
[Wang,Lin]的文章
[Wang,Dashuai]的文章
百度学术
百度学术中相似的文章
[Jiang,Naifu]的文章
[Wang,Lin]的文章
[Wang,Dashuai]的文章
必应学术
必应学术中相似的文章
[Jiang,Naifu]的文章
[Wang,Lin]的文章
[Wang,Dashuai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。