中文版 | English
题名

An Offline-Transfer-Online Framework for Cloud-Edge Collaborative Distributed Reinforcement Learning

作者
发表日期
2024
DOI
发表期刊
ISSN
1045-9219
EISSN
1558-2183
卷号35期号:5页码:720-731
摘要
Recent advances in deep reinforcement learning (DRL) have made it possible to train various powerful agents to perform complex tasks in real-time environments. With the next-generation communication technologies, making cloud-edge collaborative artificial intelligence service with evolved DRL agents can be a significant scenario. However, agents with different algorithms and architectures in the same DRL scenario may not be compatible, and training them is either time-consuming or resource-demanding. In this paper, we design a novel cloud-edge collaborative DRL training framework, named Offline-Transfer-Online, which is a new approach that can speed up the convergence of online DRL agents at the edge by interacting with offline agents in the cloud, with the minimum data interchanged and without relying on high-quality offline datasets. Therein, we propose a novel algorithm-independent knowledge distillation algorithm for online RL agents, by leveraging pre-trained models and the interface between agents and the environment to transfer distilled knowledge among multiple heterogeneous agents efficiently. Extensive experiments show that our algorithm can accelerate the convergence of various online agents in a double to decuple speed, with comparable reward achieved in different environments.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85184333067
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10417755
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/701657
专题未来网络研究院
作者单位
1.School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
2.Institute of Future Networks, Southern University of Science and Technology, China
3.Department of Computer Science, University of Hong Kong, Hong Kong, China
推荐引用方式
GB/T 7714
Zeng,Tianyu,Zhang,Xiaoxi,Duan,Jingpu,et al. An Offline-Transfer-Online Framework for Cloud-Edge Collaborative Distributed Reinforcement Learning[J]. IEEE Transactions on Parallel and Distributed Systems,2024,35(5):720-731.
APA
Zeng,Tianyu,Zhang,Xiaoxi,Duan,Jingpu,Yu,Chao,Wu,Chuan,&Chen,Xu.(2024).An Offline-Transfer-Online Framework for Cloud-Edge Collaborative Distributed Reinforcement Learning.IEEE Transactions on Parallel and Distributed Systems,35(5),720-731.
MLA
Zeng,Tianyu,et al."An Offline-Transfer-Online Framework for Cloud-Edge Collaborative Distributed Reinforcement Learning".IEEE Transactions on Parallel and Distributed Systems 35.5(2024):720-731.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zeng,Tianyu]的文章
[Zhang,Xiaoxi]的文章
[Duan,Jingpu]的文章
百度学术
百度学术中相似的文章
[Zeng,Tianyu]的文章
[Zhang,Xiaoxi]的文章
[Duan,Jingpu]的文章
必应学术
必应学术中相似的文章
[Zeng,Tianyu]的文章
[Zhang,Xiaoxi]的文章
[Duan,Jingpu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。