题名 | On n-universal quadratic forms over dyadic local fields |
作者 | |
通讯作者 | He,Zilong |
发表日期 | 2024
|
DOI | |
发表期刊 | |
ISSN | 1674-7283
|
EISSN | 1869-1862
|
摘要 | Let n ⩾ 2 be an integer. We give necessary and sufficient conditions for an integral quadratic form over dyadic local fields to be n-universal by using invariants from Beli’s theory of bases of norm generators. Also, we provide a minimal set for testing n-universal quadratic forms over dyadic local fields, as an analogue of Bhargava and Hanke’s 290-theorem (or Conway and Schneeberger’s 15-theorem) on universal quadratic forms with integer coefficients. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
引用统计 | |
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/701730 |
专题 | 理学院_数学系 |
作者单位 | 1.School of Computer Science and Technology,Dongguan University of Technology,Dongguan,523808,China 2.Department of Mathematics,Southern University of Science and Technology,Shenzhen,518055,China |
推荐引用方式 GB/T 7714 |
He,Zilong,Hu,Yong. On n-universal quadratic forms over dyadic local fields[J]. Science China Mathematics,2024.
|
APA |
He,Zilong,&Hu,Yong.(2024).On n-universal quadratic forms over dyadic local fields.Science China Mathematics.
|
MLA |
He,Zilong,et al."On n-universal quadratic forms over dyadic local fields".Science China Mathematics (2024).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
(2024) He-Hu, On n-u(380KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论