中文版 | English
题名

Ultra-Short-Term Offshore Wind Power Prediction Based on PCA-SSA-VMD and BiLSTM

作者
通讯作者Kou,Lei
发表日期
2024
DOI
发表期刊
ISSN
1424-8220
EISSN
1424-8220
卷号24期号:2
摘要
In order to realize the economic dispatch and safety stability of offshore wind farms, and to address the problems of strong randomness and strong time correlation in offshore wind power forecasting, this paper proposes a combined model of principal component analysis (PCA), sparrow algorithm (SSA), variational modal decomposition (VMD), and bidirectional long- and short-term memory neural network (BiLSTM). Firstly, the multivariate time series data were screened using the principal component analysis algorithm (PCA) to reduce the data dimensionality. Secondly, the variable modal decomposition (VMD) optimized by the SSA algorithm was applied to adaptively decompose the wind power time series data into a collection of different frequency components to eliminate the noise signals in the original data; on this basis, the hyperparameters of the BiLSTM model were optimized by integrating SSA algorithm, and the final power prediction value was obtained. Ultimately, the verification was conducted through simulation experiments; the results show that the model proposed in this paper effectively improves the prediction accuracy and verifies the effectiveness of the prediction model.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
WOS研究方向
Chemistry ; Engineering ; Instruments & Instrumentation
WOS类目
Chemistry, Analytical ; Engineering, Electrical & Electronic ; Instruments & Instrumentation
WOS记录号
WOS:001150794200001
出版者
ESI学科分类
CHEMISTRY
Scopus记录号
2-s2.0-85183259720
来源库
Scopus
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/701766
专题工学院_机械与能源工程系
作者单位
1.Institute of Oceanographic Instrumentation,Qilu University of Technology (Shandong Academy of Sciences),Qingdao,266075,China
2.Department of Mechanical and Energy Engineering,Southern University of Science and Technology,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Wang,Zhen,Ying,Youwei,Kou,Lei,et al. Ultra-Short-Term Offshore Wind Power Prediction Based on PCA-SSA-VMD and BiLSTM[J]. Sensors,2024,24(2).
APA
Wang,Zhen.,Ying,Youwei.,Kou,Lei.,Ke,Wende.,Wan,Junhe.,...&Zhang,Fangfang.(2024).Ultra-Short-Term Offshore Wind Power Prediction Based on PCA-SSA-VMD and BiLSTM.Sensors,24(2).
MLA
Wang,Zhen,et al."Ultra-Short-Term Offshore Wind Power Prediction Based on PCA-SSA-VMD and BiLSTM".Sensors 24.2(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Zhen]的文章
[Ying,Youwei]的文章
[Kou,Lei]的文章
百度学术
百度学术中相似的文章
[Wang,Zhen]的文章
[Ying,Youwei]的文章
[Kou,Lei]的文章
必应学术
必应学术中相似的文章
[Wang,Zhen]的文章
[Ying,Youwei]的文章
[Kou,Lei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。