题名 | Hyperbolicity and Rigidity for Fibred Partially Hyperbolic Systems |
作者 | |
通讯作者 | Viana,Marcelo |
发表日期 | 2024
|
DOI | |
发表期刊 | |
ISSN | 1040-7294
|
EISSN | 1572-9222
|
摘要 | Every volume-preserving accessible centre-bunched fibred partially hyperbolic system with 2-dimensional centre either (a) has two distinct centre Lyapunov exponents, or (b) exhibits an invariant continuous line field (or pair of line fields) tangent to the centre leaves, or (c) admits a continuous conformal structure on the centre leaves invariant under both the dynamics and the stable and unstable holonomies. The last two alternatives carry strong restrictions on the topology of the centre leaves: (b) can only occur on tori, and for (c) the centre leaves must be either tori or spheres. Moreover, under some additional conditions, such maps are rigid, in the sense that they are topologically conjugate to specific algebraic models. When the system is symplectic (a) implies that the centre Lyapunov exponents are non-zero, and thus the system is (non-uniformly) hyperbolic. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
Scopus记录号 | 2-s2.0-85182854268
|
来源库 | Scopus
|
引用统计 | |
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/701827 |
专题 | 理学院_数学系 |
作者单位 | 1.IMPA - Instituto de Matemática Pura e Aplicada,Rio de Janeiro,Estrada Dona Castorina 110,22460-320,Brazil 2.Department of Mathematics,Southern University of Science and Technology,Shenzhen,1088 Xueyuan Avenue,518055,China |
第一作者单位 | 数学系 |
推荐引用方式 GB/T 7714 |
Chakraborty,Sankhadip,Viana,Marcelo. Hyperbolicity and Rigidity for Fibred Partially Hyperbolic Systems[J]. Journal of Dynamics and Differential Equations,2024.
|
APA |
Chakraborty,Sankhadip,&Viana,Marcelo.(2024).Hyperbolicity and Rigidity for Fibred Partially Hyperbolic Systems.Journal of Dynamics and Differential Equations.
|
MLA |
Chakraborty,Sankhadip,et al."Hyperbolicity and Rigidity for Fibred Partially Hyperbolic Systems".Journal of Dynamics and Differential Equations (2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论