题名 | Supply Chain Inventory Management from the Perspective of "Cloud Supply Chain" — A Data Driven Approach |
作者 | |
通讯作者 | Senyu Xu |
发表日期 | 2024-02-14
|
DOI | |
发表期刊 | |
EISSN | 2227-7390
|
卷号 | 12期号:4页码:573 |
摘要 | This study systematically investigates the pivotal role of inventory management within the framework of “cloud supply chain” operations, emphasizing the efficacy of leveraging machine learning methodologies for inventory allocation with the dual objectives of cost reduction and heightened customer satisfaction. Employing a rigorous data-driven approach, the research endeavors to address inventory allocation challenges inherent in the complex dynamics of a “cloud supply chain” through the implementation of a two-stage model. Initially, machine learning is harnessed for demand forecasting, subsequently refined through the empirical distribution of forecast errors, culminating in the optimization of inventory allocation across various service levels.The empirical evaluation draws upon data derived from a reputable home appliance logistics company in China, revealing that, under conditions of ample data, the application of data-driven methods for inventory allocation surpasses the performance of traditional methods across diverse supply chain structures. Specifically, there is an improvement in accuracy by approximately 13% in an independent structure and about 16% in a dependent structure. This study transcends the constraints associated with examining a singular node, adopting an innovative research perspective that intricately explores the interplay among multiple nodes while elucidating the nuanced considerations germane to supply chain structure. Furthermore, it underscores the methodological significance of relying on extensive, large-scale data. The investigation brings to light the substantial impact of supply chain structure on safety stock allocation. In the context of a market characterized by highly uncertain demand, the strategic adaptation of the supply chain structure emerges as a proactive measure to avert potential disruptions in the supply chain. |
关键词 | |
学科门类 | 管理学::管理科学与工程(可授管理学、工学学位)
|
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
|
WOS研究方向 | Mathematics
|
WOS类目 | Mathematics
|
WOS记录号 | WOS:001168332100001
|
出版者 | |
来源库 | 人工提交
|
全文链接 | https://www.mdpi.com/2227-7390/12/4/573/pdf |
出版状态 | 正式出版
|
引用统计 |
被引频次[WOS]:2
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/701906 |
专题 | 商学院 |
作者单位 | 1.College of Business, Southern University of Science and Technology, Shenzhen 518055, China 2.School of Business, Shenzhen Institute of Technology, Shenzhen 518000, China |
第一作者单位 | 商学院 |
第一作者的第一单位 | 商学院 |
推荐引用方式 GB/T 7714 |
Yue Tan,Liyi Gu,Senyu Xu,等. Supply Chain Inventory Management from the Perspective of "Cloud Supply Chain" — A Data Driven Approach[J]. Mathematics,2024,12(4):573.
|
APA |
Yue Tan,Liyi Gu,Senyu Xu,&Mingchao Li.(2024).Supply Chain Inventory Management from the Perspective of "Cloud Supply Chain" — A Data Driven Approach.Mathematics,12(4),573.
|
MLA |
Yue Tan,et al."Supply Chain Inventory Management from the Perspective of "Cloud Supply Chain" — A Data Driven Approach".Mathematics 12.4(2024):573.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
mathematics-12-00573(685KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论