题名 | LSPTD: Low-rank and spatiotemporal priors enhanced Tucker decomposition for internet traffic data imputation |
作者 | |
通讯作者 | Wenwu Gong |
DOI | |
发表日期 | 2024-02-13
|
会议名称 | 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC)
|
ISSN | 2153-0009
|
ISBN | 979-8-3503-9947-9
|
会议录名称 | |
页码 | 460-465
|
会议日期 | 24-28 September 2023
|
会议地点 | Bilbao, Spain
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Low-rank tensor methods and their relaxation forms have performed excellently in tensor completion problems, including internet traffic data imputation. However, most are based on the unfolding matrix's nuclear norm, which inevitably destroys the traffic tensor structure and significantly suffers from computation burden. Also, few consider the intrinsic spatiotemporal features, especially for the underlying spatial similarity. This paper proposes a novel low-rank and spatiotemporal priors enhanced Tucker decomposition (called LSPTD) for internet traffic data imputation. LSPTD model exploits the spatial similarity using factor graph embedding and characterizes the temporal correlation using the Toeplitz matrix. Two easily implementable algorithms and the closed-form updating rules are designed to solve the LSPTD model. Numerical experiments on the Abilene and GE ' ANT datasets demonstrate that our proposed model is superior to the other imputation methods in terms of NMAE and computation time. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | Shenzhen Science and Technology Plan platform and carrier special[ZDSYS20210623092007023]
|
WOS研究方向 | Automation & Control Systems
; Computer Science
; Transportation
|
WOS类目 | Automation & Control Systems
; Computer Science, Artificial Intelligence
; Transportation Science & Technology
|
WOS记录号 | WOS:001178996700068
|
来源库 | 人工提交
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10422071 |
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/701991 |
专题 | 理学院_统计与数据科学系 |
作者单位 | Department of Statistics and Data Science, Southern University of Science and Technology, Shenzhen, 518055, China |
第一作者单位 | 统计与数据科学系 |
通讯作者单位 | 统计与数据科学系 |
第一作者的第一单位 | 统计与数据科学系 |
推荐引用方式 GB/T 7714 |
Wenwu Gong,Zhejun Huang,Lili Yang. LSPTD: Low-rank and spatiotemporal priors enhanced Tucker decomposition for internet traffic data imputation[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2024:460-465.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
LSPTD_Low-Rank_and_S(834KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论