中文版 | English
题名

Promoting Collaborations in Cross-Silo Federated Learning: Challenges and Opportunities

作者
通讯作者Jianwei Huang
发表日期
2023-12-25
DOI
发表期刊
ISSN
1558-1896
卷号62期号:4页码:1 - 7
摘要

In cross-silo federated learning (FL), companies or organizations collectively train a shared model while keeping the raw data local. The success of cross-silo FL relies on client cooperation, effective communication, and sufficient resource contributions for model training. However, several unique challenges make client collaboration in cross-silo FL difficult. First, as the global model is a public good, clients may choose to free ride on the process instead of actively contributing to the training process. Second, market competition among clients also discourages their collaborations in training, as clients may not want their business competitors to obtain a high-quality model. Third, repeated interactions among clients may further decentivize collaboration, as one can free ride on others' long-term active contributions. This paper focuses on designing effective economic mechanisms to address the above challenges. Specifically, we propose an incentive mechanism to address the public good issue, a revenue-sharing mechanism to mitigate business competition, and a cooperative strategy to enable clients' longterm collaboration. Our results provide insights into better design of collaboration mechanism and communication in practical cross-silo applications. We further discuss some future directions and open issues that merit research efforts from the community.

关键词
相关链接[IEEE记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
ESI学科分类
COMPUTER SCIENCE
来源库
人工提交
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10373828
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/702021
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science, University of California, Davis
2.Department of Computer Science and Engineering at Southern University of Science and Technology
3.School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, China
4.School of Science and Engineering, the Chinese University of Hong Kong, Shenzhen, and the Shenzhen Institute of Artificial Intelligence and Robotics
推荐引用方式
GB/T 7714
Chao Huang,Ming Tang,Qian Ma,et al. Promoting Collaborations in Cross-Silo Federated Learning: Challenges and Opportunities[J]. IEEE Communications Magazine,2023,62(4):1 - 7.
APA
Chao Huang,Ming Tang,Qian Ma,Jianwei Huang,&Xin Liu.(2023).Promoting Collaborations in Cross-Silo Federated Learning: Challenges and Opportunities.IEEE Communications Magazine,62(4),1 - 7.
MLA
Chao Huang,et al."Promoting Collaborations in Cross-Silo Federated Learning: Challenges and Opportunities".IEEE Communications Magazine 62.4(2023):1 - 7.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Promoting Collaborat(740KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chao Huang]的文章
[Ming Tang]的文章
[Qian Ma]的文章
百度学术
百度学术中相似的文章
[Chao Huang]的文章
[Ming Tang]的文章
[Qian Ma]的文章
必应学术
必应学术中相似的文章
[Chao Huang]的文章
[Ming Tang]的文章
[Qian Ma]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。