中文版 | English
题名

Constrained Policy Optimization with Explicit Behavior Density for Offline Reinforcement Learning

作者
通讯作者Wenjia Wang; Bing-Yi Jing
发表日期
2023
会议名称
37th Conference on Neural Information Processing Systems (NeurIPS)
ISSN
1049-5258
会议录名称
会议日期
DEC 10-16, 2023
会议地点
null,New Orleans,LA
出版地
10010 NORTH TORREY PINES RD, LA JOLLA, CALIFORNIA 92037 USA
出版者
摘要
Due to the inability to interact with the environment, offline reinforcement learning (RL) methods face the challenge of estimating the Out-of-Distribution (OOD) points. Existing methods for addressing this issue either control policy to exclude the OOD action or make the Q function pessimistic. However, these methods can be overly conservative or fail to identify OOD areas accurately. To overcome this problem, we propose a Constrained Policy optimization with Explicit Behavior density (CPED) method that utilizes a flow-GAN model to explicitly estimate the density of behavior policy. By estimating the explicit density, CPED can accurately identify the safe region and enable optimization within the region, resulting in less conservative learning policies. We further provide theoretical results for both the flow-GAN estimator and performance guarantee for CPED by showing that CPED can find the optimal Q-function value. Empirically, CPED outperforms existing alternatives on various standard offline reinforcement learning tasks, yielding higher expected returns.
学校署名
通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
Guangzhou Municipal Science and Technology Project[2023A03J0019] ; null[2023A03J0003]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Information Systems
WOS记录号
WOS:001220600005004
来源库
Web of Science
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/702033
专题南方科技大学
理学院_统计与数据科学系
作者单位
1.The Hong Kong University of Science and Technology
2.Kuaishou Technologies
3.The Hong Kong University of Science and Technology(Guangzhou)
4.Southern University of Science and Technology
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Jing Zhang,Chi Zhang,Wenjia Wang,et al. Constrained Policy Optimization with Explicit Behavior Density for Offline Reinforcement Learning[C]. 10010 NORTH TORREY PINES RD, LA JOLLA, CALIFORNIA 92037 USA:NEURAL INFORMATION PROCESSING SYSTEMS (NIPS),2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Constrained Policy O(855KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jing Zhang]的文章
[Chi Zhang]的文章
[Wenjia Wang]的文章
百度学术
百度学术中相似的文章
[Jing Zhang]的文章
[Chi Zhang]的文章
[Wenjia Wang]的文章
必应学术
必应学术中相似的文章
[Jing Zhang]的文章
[Chi Zhang]的文章
[Wenjia Wang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。