题名 | Constrained Policy Optimization with Explicit Behavior Density for Offline Reinforcement Learning |
作者 | |
通讯作者 | Wenjia Wang; Bing-Yi Jing |
发表日期 | 2023
|
会议名称 | 37th Conference on Neural Information Processing Systems (NeurIPS)
|
ISSN | 1049-5258
|
会议录名称 | |
会议日期 | DEC 10-16, 2023
|
会议地点 | null,New Orleans,LA
|
出版地 | 10010 NORTH TORREY PINES RD, LA JOLLA, CALIFORNIA 92037 USA
|
出版者 | |
摘要 | Due to the inability to interact with the environment, offline reinforcement learning (RL) methods face the challenge of estimating the Out-of-Distribution (OOD) points. Existing methods for addressing this issue either control policy to exclude the OOD action or make the Q function pessimistic. However, these methods can be overly conservative or fail to identify OOD areas accurately. To overcome this problem, we propose a Constrained Policy optimization with Explicit Behavior density (CPED) method that utilizes a flow-GAN model to explicitly estimate the density of behavior policy. By estimating the explicit density, CPED can accurately identify the safe region and enable optimization within the region, resulting in less conservative learning policies. We further provide theoretical results for both the flow-GAN estimator and performance guarantee for CPED by showing that CPED can find the optimal Q-function value. Empirically, CPED outperforms existing alternatives on various standard offline reinforcement learning tasks, yielding higher expected returns. |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | Guangzhou Municipal Science and Technology Project[2023A03J0019]
; null[2023A03J0003]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Information Systems
|
WOS记录号 | WOS:001220600005004
|
来源库 | Web of Science
|
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/702033 |
专题 | 南方科技大学 理学院_统计与数据科学系 |
作者单位 | 1.The Hong Kong University of Science and Technology 2.Kuaishou Technologies 3.The Hong Kong University of Science and Technology(Guangzhou) 4.Southern University of Science and Technology |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Jing Zhang,Chi Zhang,Wenjia Wang,et al. Constrained Policy Optimization with Explicit Behavior Density for Offline Reinforcement Learning[C]. 10010 NORTH TORREY PINES RD, LA JOLLA, CALIFORNIA 92037 USA:NEURAL INFORMATION PROCESSING SYSTEMS (NIPS),2023.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Constrained Policy O(855KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论