中文版 | English
题名

Learning time-series data of industrial design optimization using recurrent neural networks

作者
DOI
发表日期
2019-11-01
ISSN
2375-9232
EISSN
2375-9259
ISBN
978-1-7281-4897-7
会议录名称
卷号
2019-November
页码
785-792
会议日期
8-11 Nov. 2019
会议地点
Beijing, China
出版者
摘要
In automotive digital development, 3D shape morphing techniques are used to create new designs in order to match design targets, such as aerodynamic or stylistic requirements. Control-point based shape morphing alters existing geometries either through human user interactions or through computational optimization algorithms that optimize for product performance targets. Shape morphing is typically continuous and results in potentially large data sets of time-series recordings of control point movements. In the present paper, we utilize recurrent neural networks to model such time-series recordings in order to predict future design steps based on the history of currently performed design modifications. To build a data set sufficiently large for the training of neural networks, we use target shape matching optimization as digital analogy for a human user interactive shape modification and to build data sets of control point movements in an automated fashion. Experiments show the potential of recurrent neural networks to successfully learn time-series data representing design changes and to perform single-and multi-step prediction of potential next design steps. We thus demonstrate the feasibility of recurrent neural networks for learning successful design sequences in order to predict promising next design steps in future design tasks.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Horizon 2020 Framework Programme[766186]
EI入藏号
20200608123343
EI主题词
Computer aided engineering ; Computer aided instruction ; Data mining ; Deep learning ; Deep neural networks ; Forecasting ; Optimization ; Product design ; Shape optimization ; Time series
EI分类号
Data Processing and Image Processing:723.2 ; Computer Applications:723.5 ; Production Engineering:913.1 ; Optimization Techniques:921.5 ; Mathematical Statistics:922.2
Scopus记录号
2-s2.0-85078738761
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8955564
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/70208
专题工学院_计算机科学与工程系
作者单位
1.Honda Research Institute Europe GmbH,Offenbach,Carl-Legien-Str. 30,63073,Germany
2.Leiden Institute of Advanced Computer Science (LIACS),CA Leiden,Niels Bohrweg 1,2333,Netherlands
3.CERCIA,School of Computer Science,University of Birmingham,Birmingham,United Kingdom
4.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
5.NEC Laboratories Europe,Heidelberg,Kurfürsten-Anlage 36,69115,Germany
推荐引用方式
GB/T 7714
Saha,Sneha,Rios,Thiago,Menzel,Stefan,et al. Learning time-series data of industrial design optimization using recurrent neural networks[C]:IEEE Computer Society,2019:785-792.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Saha,Sneha]的文章
[Rios,Thiago]的文章
[Menzel,Stefan]的文章
百度学术
百度学术中相似的文章
[Saha,Sneha]的文章
[Rios,Thiago]的文章
[Menzel,Stefan]的文章
必应学术
必应学术中相似的文章
[Saha,Sneha]的文章
[Rios,Thiago]的文章
[Menzel,Stefan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。