中文版 | English
题名

VSPIM: SRAM Processing-in-Memory DNN Acceleration via Vector-Scalar Operations

作者
发表日期
2024-10-01
DOI
发表期刊
ISSN
2326-3814
卷号73期号:10
摘要
Processing-in-Memory (PIM) has been widely explored for accelerating data-intensive machine learning computation that mainly consists of general-matrix-multiplication (GEMM), by mitigating the burden of data movements and exploiting the ultra-high memory parallelism. The two mainstreams of PIM, the analog- and digital-type, have both been exploited in accelerating machine learning workloads by numerous outstanding prior works. Currently, the digital-PIM is increasingly favored due to the broader computing support and the avoidance of errors caused by intrinsic non-idealities, e.g., process variation. Nevertheless, it still lacks further optimization considering the characteristics of the GEMM computation, including better efficient data layout and scheduling, and the ability to handle the sparsity of activations at the bit-level. To boost the performance and efficiency of digital SRAM PIM, we propose the architecture called VSPIM that performs the computation in a bit-serial fashion, with unique support of vector-scalar computing pattern. The novelties of the VSPIM can be concluded as follows: 1) support bit-serial based scalar-vector computing via ingenious parallel bit-broadcasting; 2) refine the GEMM mapping strategy and computing pattern to enhance performance and efficiency; 3) powered by the introduced scalar-vector operation, the bit-sparsity of activation is leveraged to halt unnecessary computation to maximize efficiency and throughput. Our comprehensive evaluation shows that, compared to the state-of-the-art SRAM-based digital-PIM design (Neural Cache), VSPIM can significantly boost the performance and energy efficiency by up to $8.87\times$8.87× and $4.81\times$4.81× respectively, with negligible area overhead, upon multiple representative neural networks.
相关链接[IEEE记录]
学校署名
其他
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/705260
专题工学院_深港微电子学院
作者单位
1.Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
2.University of Central Florida, Orlando, FL, USA
3.School of Microelectronics, Southern University of Science and Technology, Shenzhen, China
4.Microsoft Research Asia, Beijing, China
5.Alibaba Group US Inc, San Diego, CA, USA
6.University of Michigan-Shanghai Jiao Tong University Joint Institute, Ann Arbor, MI, USA
7.Department of Micro-Nano Electronics, Shanghai Jiao Tong University, Shanghai, China
推荐引用方式
GB/T 7714
Chen Nie,Chenyu Tang,Jie Lin,et al. VSPIM: SRAM Processing-in-Memory DNN Acceleration via Vector-Scalar Operations[J]. IEEE Transactions on Computers,2024,73(10).
APA
Chen Nie.,Chenyu Tang.,Jie Lin.,Huan Hu.,Chenyang Lv.,...&Zhezhi He.(2024).VSPIM: SRAM Processing-in-Memory DNN Acceleration via Vector-Scalar Operations.IEEE Transactions on Computers,73(10).
MLA
Chen Nie,et al."VSPIM: SRAM Processing-in-Memory DNN Acceleration via Vector-Scalar Operations".IEEE Transactions on Computers 73.10(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
VSPIM_SRAM_Processin(851KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen Nie]的文章
[Chenyu Tang]的文章
[Jie Lin]的文章
百度学术
百度学术中相似的文章
[Chen Nie]的文章
[Chenyu Tang]的文章
[Jie Lin]的文章
必应学术
必应学术中相似的文章
[Chen Nie]的文章
[Chenyu Tang]的文章
[Jie Lin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。