题名 | Proprioceptive Learning with Soft Polyhedral Networks |
作者 | |
通讯作者 | Fang Wan; Chaoyang Song |
共同第一作者 | Xiaobo Liu; Xudong Han |
发表日期 | 2024
|
DOI | |
发表期刊 | |
ISSN | 0278-3649
|
EISSN | 1741-3176
|
摘要 | Proprioception is the "sixth sense" that detects limb postures with motor neurons. It requires a natural integration between the musculoskeletal systems and sensory receptors, which is challenging among modern robots that aim for lightweight, adaptive, and sensitive designs at low costs in mechanical design and algorithmic computation. Here, we present the Soft Polyhedral Network with an embedded vision for physical interactions, capable of adaptive kinesthesia and viscoelastic proprioception by learning kinetic features. This design enables passive adaptations to omni-directional interactions, visually captured by a miniature high-speed motion-tracking system embedded inside for proprioceptive learning. The results show that the soft network can infer real-time 6D forces and torques with accuracies of 0.25/0.24/0.35 N and 0.025/0.034/0.006 Nm in dynamic interactions. We also incorporate viscoelasticity in proprioception during static adaptation by adding a creep and relaxation modifier to refine the predicted results. The proposed soft network combines simplicity in design, omni-adaptation, and proprioceptive sensing with high accuracy, making it a versatile solution for robotics at a low material cost with more than one million use cycles for tasks such as sensitive and competitive grasping and touch-based geometry reconstruction. This study offers new insights into vision-based proprioception for soft robots in adaptive grasping, soft manipulation, and human-robot interaction. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 共同第一
; 通讯
|
资助项目 | National Natural Science Foundation of China["62206119","52335003"]
; Science, Technology, and Innovation Commission of Shenzhen Municipality["JCYJ20220818100417038","ZDSYS20220527171403009"]
|
WOS研究方向 | Robotics
|
WOS类目 | Robotics
|
WOS记录号 | WOS:001183970900001
|
出版者 | |
EI入藏号 | 20241215771000
|
EI主题词 | Human robot interaction
; Machine design
; Musculoskeletal system
; Neurons
; Sensory perception
; Tactile sensors
|
EI分类号 | Biomechanics, Bionics and Biomimetics:461.3
; Ergonomics and Human Factors Engineering:461.4
; Biology:461.9
; Mechanical Design:601
; Robotics:731.5
; Robot Applications:731.6
; Physical Properties of Gases, Liquids and Solids:931.2
|
ESI学科分类 | ENGINEERING
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/706035 |
专题 | 南方科技大学 工学院_机械与能源工程系 |
作者单位 | Southern University of Science and Technology Shenzhen, China 518055 |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Xiaobo Liu,Xudong Han,Wei Hong,et al. Proprioceptive Learning with Soft Polyhedral Networks[J]. International Journal of Robotics Research,2024.
|
APA |
Xiaobo Liu,Xudong Han,Wei Hong,Fang Wan,&Chaoyang Song.(2024).Proprioceptive Learning with Soft Polyhedral Networks.International Journal of Robotics Research.
|
MLA |
Xiaobo Liu,et al."Proprioceptive Learning with Soft Polyhedral Networks".International Journal of Robotics Research (2024).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
MainDocument-Revised(13478KB) | -- | -- | 限制开放 | -- | ||
screencapture-mc-man(905KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论