中文版 | English
题名

Multiple channel adjustment based on composite backbone network for underwater image enhancement

作者
通讯作者Lu, Dongxin
发表日期
2023
DOI
发表期刊
ISSN
1758-0366
EISSN
1758-0374
卷号22期号:3页码:162-175
摘要
In order to heighten enhancement effects for underwater images under different conditions, multiple channel adjustment based on composite backbone network (MC-CBNet) was proposed that skilfully combine the enhancement effect from RGB colour space as well as HSV and Lab. MC-CBNet consists of a preliminary enhance block, a multi-space adjust block and a confidence map block. Preliminary enhance block and multi-space adjust block adjust the images from RGB, HSV and Lab colour spaces respectively. The confidence map is obtained by the ultimate block to fuse the results of different channels. Besides, preliminary enhance block and confidence map block are formed from composite backbones. Experimental results on underwater image enhancement benchmark (UIEB) indicate that our method gets better grades than existing methods under both reference subset and challenging subset evaluation.
Copyright © 2023 Inderscience Enterprises Ltd.
关键词
相关链接[来源记录]
收录类别
EI ; SCI
语种
英语
学校署名
第一
资助项目
This research is sponsored by the following funds: 1 Public welfare technology research project of Zhejiang Provinces Science Foundation in China. The effect model Construction and 3D visualisation of auricular point pivot regulation of brain neural (NO. LGF20F020009). 2 Key R&D Program of Zhejiang Province. Research on intelligent service technology and equipment of health and elderly care-Support the research and application development of medical nursing care robot and elderly care service system of internet hospitals (NO. 2020C03107). 3 Shandong Provincial Natural Science Foundation (Grant No. ZR2023QF036 and Grant No. ZR2021MD070). 4 Shenzhen Natural Science Foundation Project: Design of Micro Underwater Unmanned Vehicles and Research on Neural Networks for Underwater Image Processing.
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:001127284400001
出版者
EI入藏号
20240215355703
EI主题词
Deep learning ; Underwater imaging
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Imaging Techniques:746
来源库
EV Compendex
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/706279
专题工学院_系统设计与智能制造学院
工学院_机械与能源工程系
作者单位
1.School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen; 518055, China
2.Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen; 518055, China
3.Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao; 266075, China
4.Health Management System Engineering Center, School of Public Health, Hangzhou Normal University, Hangzhou; 311121, China
第一作者单位系统设计与智能制造学院
第一作者的第一单位系统设计与智能制造学院
推荐引用方式
GB/T 7714
Chen, Yuhan,Ke, Wende,Kou, Lei,et al. Multiple channel adjustment based on composite backbone network for underwater image enhancement[J]. International Journal of Bio-Inspired Computation,2023,22(3):162-175.
APA
Chen, Yuhan.,Ke, Wende.,Kou, Lei.,Li, Qingfeng.,Lu, Dongxin.,...&Wan, Junhe.(2023).Multiple channel adjustment based on composite backbone network for underwater image enhancement.International Journal of Bio-Inspired Computation,22(3),162-175.
MLA
Chen, Yuhan,et al."Multiple channel adjustment based on composite backbone network for underwater image enhancement".International Journal of Bio-Inspired Computation 22.3(2023):162-175.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen, Yuhan]的文章
[Ke, Wende]的文章
[Kou, Lei]的文章
百度学术
百度学术中相似的文章
[Chen, Yuhan]的文章
[Ke, Wende]的文章
[Kou, Lei]的文章
必应学术
必应学术中相似的文章
[Chen, Yuhan]的文章
[Ke, Wende]的文章
[Kou, Lei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。