中文版 | English
题名

Spinal Lesions Classification and Localization with ACAT-Net from X-ray Images

作者
通讯作者Yang, Chunfeng; Feng, Qianjin; Chen, Yang
DOI
发表日期
2023
会议名称
2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023
ISSN
2156-1125
ISBN
9798350337488
会议录名称
页码
1319-1324
会议日期
December 5, 2023 - December 8, 2023
会议地点
Istanbul, Turkey
会议录编者/会议主办者
NSF
出版者
摘要
X-ray images play an important role in the diagnosis of spinal diseases because of their convenient collection and easy observation. But it is time-consuming and challenging for radiologists to examine the differences between the vertebrae to diagnose abnormalities and locate lesions. Many existing methods try to extract the global features of radiographs and do not make full use of adjacent vertebrae variations. In this paper, we propose a novel Axial-aware neural network with Consecutive Attention Transformer (CAT), namely ACAT-Net, which takes advantage of the convolutional neural network and transformer as a new deep learning framework. A deep convolutional network extracts features of anteroposterior and lateral X-ray images that may have abnormalities in them. The consecutive attention transformer block is then used to focus on the morphological differences of axial adjacent vertebrae on the spines. The ingenious structure we designed can significantly reduce the amount of network parameters. Extensive experiments on clinical and public datasets show that our method is remarkably superior to other existing approaches in the spine X-ray image analysis.
© 2023 IEEE.
关键词
学校署名
其他
语种
英语
相关链接[IEEE记录]
收录类别
EI入藏号
20240715560320
来源库
EV Compendex
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10385629
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/706305
专题工学院
作者单位
1.Nanjing Drum Tower Hospital, Department of Radiology, Nanjing; 210008, China
2.Southern University of Science and Technology, College of Engineering, Shenzhen; 518055, China
3.Southern Medical University, School of Biomedical Engineering, Guangzhou; 510515, China
4.Southeast University, School of Computer Science and Engineering, Nanjing; 210096, China
5.Key Lab. of New Generation Artif. Intell. Technol. and Its Interdisc. Applic. (Southeast University), Ministry of Education, Nanjing; 210096, China
推荐引用方式
GB/T 7714
Liu, Hongzhi,Mai, Xiaoli,Han, Junyang,et al. Spinal Lesions Classification and Localization with ACAT-Net from X-ray Images[C]//NSF:Institute of Electrical and Electronics Engineers Inc.,2023:1319-1324.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu, Hongzhi]的文章
[Mai, Xiaoli]的文章
[Han, Junyang]的文章
百度学术
百度学术中相似的文章
[Liu, Hongzhi]的文章
[Mai, Xiaoli]的文章
[Han, Junyang]的文章
必应学术
必应学术中相似的文章
[Liu, Hongzhi]的文章
[Mai, Xiaoli]的文章
[Han, Junyang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。