中文版 | English
题名

Privileged Modality Guided Network for Retinal Vessel Segmentation in Ultra-Wide-Field Images

作者
通讯作者Zhao, Yitian
DOI
发表日期
2023
会议名称
10th International Workshop on Ophthalmic Medical Image Analysis (OMIA)
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-031-44012-0
会议录名称
卷号
14096
会议日期
OCT 12, 2023
会议地点
null,Vancouver,CANADA
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
Retinal vessel segmentation in ophthalmic images is an essential task to support the computer-aided diagnosis of eye-related diseases. As a non-invasive imaging technique, ultra-wide-field (UWF) fundus imaging provides a large field-of-view (FOV) of 200. with full coverage of the retinal territory, making it a suitable modality for vessel analysis. However, imaging the large FOV may result in low-contrast vascular details and background artifacts, which pose challenges to the accurate segmentation of retinal microvasculature. To address these issues, a privileged modality guided multi-scale location-aware fusion network is proposed for vessel segmentation in UWF images. We first perform style transfer on the UWF images to generate the corresponding FFA image with higher contrast. Afterwards, we employ cross-modal coherence loss to segment the vessels guided by the FFA image. Additionally, a multi-scale location-aware fusion module is proposed and embedded into the segmentation network for reducing the boundary artifacts. Finally, experiments are performed on a dedicated UWF dataset, and the evaluation results demonstrate that our method achieves competitive vessel segmentation performance with a Dice score of around 78.13%. This indicates that our method is potentially valuable for subsequent vessel analysis to support disease diangosis.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
WOS研究方向
Computer Science ; Engineering ; Ophthalmology
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Engineering, Biomedical ; Ophthalmology
WOS记录号
WOS:001116062200009
来源库
Web of Science
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/706443
专题工学院_计算机科学与工程系
作者单位
1.Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
2.University of Chinese Academy of Sciences, Beijing, China
3.Institute of High Performance Computing, A*STAR, Singapore, Singapore
4.School of Cyber Science and Engineering, Ningbo University of Technology, Ningbo, China
5.Shandong Artificial Intelligence Institute, Jinan, China
6.Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
7.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Li, Xuefei,Hao, Huaying,Fu, Huazhu,et al. Privileged Modality Guided Network for Retinal Vessel Segmentation in Ultra-Wide-Field Images[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2023.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li, Xuefei]的文章
[Hao, Huaying]的文章
[Fu, Huazhu]的文章
百度学术
百度学术中相似的文章
[Li, Xuefei]的文章
[Hao, Huaying]的文章
[Fu, Huazhu]的文章
必应学术
必应学术中相似的文章
[Li, Xuefei]的文章
[Hao, Huaying]的文章
[Fu, Huazhu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。