中文版 | English
题名

Specific-Modal Spatial Guidance and Feature Enhancement for Multi-modal Brain Tumor Segmentation

作者
通讯作者Zhang, Pinzheng; Coatrieux, Jean-Louis
DOI
发表日期
2023
会议名称
2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023
ISSN
2156-1125
ISBN
9798350337488
会议录名称
页码
1951-1956
会议日期
December 5, 2023 - December 8, 2023
会议地点
Istanbul, Turkey
会议录编者/会议主办者
NSF
出版者
摘要
Multi-modal information plays a pivotal role in the segmentation of brain tumors. However, previous studies have largely overlooked the distinctive characteristics of individual modalities, which are correlated with the target tumor region due to distinct imaging principles. In this paper, we harness the distinctive traits of individual modalities and introduce a brain tumor segmentation model called specific modality guided brain tumor segmentation model (SMG-BTS). Our SMG-BTS adopts a three-branch encoder-decoder architecture. The main branch utilizes full modalities fused at input-level, while the two affiliated branches operate in parallel to provide guidance to the main branch in acquiring a robust representation. We propose a specific modality spatial guidance (SMSG) module to guide the process of feature extraction. Spatial information is obtained from selected modalities and utilized to enhance features extracted from the main branch. A shared-specific feature enhancement(SSFE) module is proposed to enhance the shared features across modalities and utilizes modality-specific features to further supplement specific information of modalities. Experimental results on the BraTS2021 benchmark dataset demonstrate the effectiveness of our proposed SMG-BTS over state-of-the-art brain tumor segmentation methods.
© 2023 IEEE.
关键词
学校署名
其他
语种
英语
相关链接[IEEE记录]
收录类别
EI入藏号
20240715560154
来源库
EV Compendex
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10385512
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/706530
专题工学院
作者单位
1.Southern University of Science and Technology, College of Engineering, Shenzhen; 518055, China
2.Southeast University, School of Computer Science and Engineering, Nanjing; 210096, China
3.The Key Lab. of New Generation Artif. Intell. Technol. and Its Interdisc. Applic. (SE University), Ministry of Education, Nanjing; 210096, China
4.University of Rennes 1, Centre de Recherche en Information Biomedicale Sino-Francais, Inserm, Rennes; 35042, France
推荐引用方式
GB/T 7714
Han, Junyang,Xue, Cheng,Liu, Hongzhi,et al. Specific-Modal Spatial Guidance and Feature Enhancement for Multi-modal Brain Tumor Segmentation[C]//NSF:Institute of Electrical and Electronics Engineers Inc.,2023:1951-1956.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Han, Junyang]的文章
[Xue, Cheng]的文章
[Liu, Hongzhi]的文章
百度学术
百度学术中相似的文章
[Han, Junyang]的文章
[Xue, Cheng]的文章
[Liu, Hongzhi]的文章
必应学术
必应学术中相似的文章
[Han, Junyang]的文章
[Xue, Cheng]的文章
[Liu, Hongzhi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。