中文版 | English
题名

Towards Automated Detection of Unethical Behavior in Open-Source Software Projects

作者
通讯作者Tan, Shin Hwei
DOI
发表日期
2023
会议名称
31st ACM Joint Meeting of the European Software Engineering Conference / Symposium on the Foundations-of-Software-Engineering (ESEC/FSE)
会议录名称
会议日期
DEC 03-09, 2023
会议地点
null,San Francisco,CA
出版地
1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
出版者
摘要
Given the rapid growth of Open-Source Software (OSS) projects, ethical considerations are becoming more important. Past studies focused on specific ethical issues (e.g., gender bias and fairness in OSS). There is little to no study on the different types of unethical behavior in OSS projects. We present the first study of unethical behavior in OSS projects from the stakeholders' perspective. Our study of 316 GitHub issues provides a taxonomy of 15 types of unethical behavior guided by six ethical principles (e.g., autonomy). Examples of new unethical behavior include soft forking (copying a repository without forking) and self-promotion (promoting a repository without self-identifying as contributor to the repository). We also identify 18 types of software artifacts affected by the unethical behavior. The diverse types of unethical behavior identified in our study (1) call for attentions of developers and researchers when making contributions in GitHub, and (2) point to future research on automated detection of unethical behavior in OSS projects. From our study, we propose Etor, an approach that can automatically detect six types of unethical behavior by using ontological engineering and Semantic Web Rule Language (SWRL) rules to model GitHub attributes and software artifacts. Our evaluation on 195,621 GitHub issues (1,765 GitHub repositories) shows that Etor can automatically detect 548 unethical behavior with 74.8% average true positive rate (up to 100% true positive rate). This shows the feasibility of automated detection of unethical behavior in OSS projects.
关键词
学校署名
第一
语种
英语
相关链接[来源记录]
收录类别
WOS研究方向
Computer Science
WOS类目
Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号
WOS:001148157800053
来源库
Web of Science
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/706643
专题南方科技大学
作者单位
1.Southern University of Science and Technology, China
2.Concordia University, Canada
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Win, Hsu Myat,Wang, Haibo,Tan, Shin Hwei. Towards Automated Detection of Unethical Behavior in Open-Source Software Projects[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2023.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Win, Hsu Myat]的文章
[Wang, Haibo]的文章
[Tan, Shin Hwei]的文章
百度学术
百度学术中相似的文章
[Win, Hsu Myat]的文章
[Wang, Haibo]的文章
[Tan, Shin Hwei]的文章
必应学术
必应学术中相似的文章
[Win, Hsu Myat]的文章
[Wang, Haibo]的文章
[Tan, Shin Hwei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。