中文版 | English
题名

Statfier: Automated Testing of Static Analyzers via Semantic-Preserving Program Transformations

作者
通讯作者Tan, Shin Hwei
DOI
发表日期
2023
会议名称
31st ACM Joint Meeting of the European Software Engineering Conference / Symposium on the Foundations-of-Software-Engineering (ESEC/FSE)
会议录名称
会议日期
DEC 03-09, 2023
会议地点
null,San Francisco,CA
出版地
1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
出版者
摘要
Static analyzers reason about the behaviors of programs without executing them and report issues when they violate pre-defined desirable properties. One of the key limitations of static analyzers is their tendency to produce inaccurate and incomplete analysis results, i.e., they often generate too many spurious warnings and miss important issues. To help enhance the reliability of a static analyzer, developers usually manually write tests involving input programs and the corresponding expected analysis results for the analyzers. Meanwhile, a static analyzer often includes example programs in its documentation to demonstrate the desirable properties and/or their violations. Our key insight is that we can reuse programs extracted either from the official test suite or documentation and apply semantic-preserving transformations to them to generate variants. We studied the quality of input programs from these two sources and found that most rules in static analyzers are covered by at least one input program, implying the potential of using these programs as the basis for test generation. We present Statfier, a heuristic-based automated testing approach for static analyzers that generates program variants via semantic-preserving transformations and detects inconsistencies between the original program and variants (indicate inaccurate analysis results in the static analyzer). To select variants that are more likely to reveal new bugs, Statfier uses two key heuristics: (1) analysis report guided location selection that uses program locations in the reports produced by static analyzers to perform transformations and (2) structure diversity driven variant selection that chooses variants with different program contexts and diverse types of transformations. Our experiments with five popular static analyzers show that Statfier can find 79 bugs in these analyzers, of which 46 have been confirmed.
关键词
学校署名
第一
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Natural Science Foundation of China["62002256","62232001"]
WOS研究方向
Computer Science
WOS类目
Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号
WOS:001148157800021
来源库
Web of Science
引用统计
被引频次[WOS]:5
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/706649
专题南方科技大学
作者单位
1.Southern University of Science and Technology, Shenzhen, China
2.The Hong Kong Polytechnic University, Hong Kong
3.College of Intelligence and Computing, Tianjin University, Tianjin, China
4.Concordia University, Montreal, Canada
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Zhang, Huaien,Pei, Yu,Chen, Junjie,et al. Statfier: Automated Testing of Static Analyzers via Semantic-Preserving Program Transformations[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2023.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Huaien]的文章
[Pei, Yu]的文章
[Chen, Junjie]的文章
百度学术
百度学术中相似的文章
[Zhang, Huaien]的文章
[Pei, Yu]的文章
[Chen, Junjie]的文章
必应学术
必应学术中相似的文章
[Zhang, Huaien]的文章
[Pei, Yu]的文章
[Chen, Junjie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。