中文版 | English
题名

Depth-aided Camouflaged Object Detection

作者
通讯作者Chen, Peng; Zheng, Feng
DOI
发表日期
2023-10-26
会议名称
31st ACM International Conference on Multimedia, MM 2023
ISBN
9798400701085
会议录名称
页码
3297-3306
会议日期
October 29, 2023 - November 3, 2023
会议地点
Ottawa, ON, Canada
会议录编者/会议主办者
ACM SIGMM
出版者
摘要
Camouflaged Object Detection (COD) aims to identify and segment objects that blend into their surroundings. Since the color and texture of the camouflaged objects are extremely similar to the surrounding environment, it is super challenging for vision models to precisely detect them. Inspired by research on biology and evolution, we introduce depth information as an additional cue to help break camouflage, which can provide spatial information and texture-free separation for foreground and background. To dig clues of camouflaged objects in both RGB and depth modalities, we innovatively propose Depth-aided Camouflaged Object Detection (DaCOD), which involves two key components. We firstly propose the Multi-modal Collaborative Learning (MCL) module, which aims to collaboratively learning deep features from both RGB and depth channels via a hybrid backbone. Then, we propose a novel Cross-modal Asymmetric Fusion (CAF) strategy, which asymmetrically fuse RGB and depth information for complementary depth feature enhancement to produce accurate predictions. We conducted numerous experiments of the proposed DaCOD on three widely-used challenging COD benchmark datasets, in which DaCOD outperforms the current state-of-the-arts by a large margin. All resources are available at https://github.com/qingwei-wang/DaCOD.
© 2023 ACM.
学校署名
通讯
语种
英语
收录类别
资助项目
This work was supported by the National Key R&D Program of China (Grant NO. 2022YFF1202903), and the National Natural Science Foundation of China (Grant NO. 62122035 and 61871258).
EI入藏号
20235015224726
EI主题词
Large dataset ; Object recognition ; Textures
EI分类号
Data Processing and Image Processing:723.2
来源库
EV Compendex
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/706726
专题南方科技大学
作者单位
1.China Three Gorges University, China
2.Southern University of Science and Technology, China
3.University of Birmingham, United Kingdom
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Wang, Qingwei,Yang, Jinyu,Yu, Xiaosheng,et al. Depth-aided Camouflaged Object Detection[C]//ACM SIGMM:Association for Computing Machinery, Inc,2023:3297-3306.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Qingwei]的文章
[Yang, Jinyu]的文章
[Yu, Xiaosheng]的文章
百度学术
百度学术中相似的文章
[Wang, Qingwei]的文章
[Yang, Jinyu]的文章
[Yu, Xiaosheng]的文章
必应学术
必应学术中相似的文章
[Wang, Qingwei]的文章
[Yang, Jinyu]的文章
[Yu, Xiaosheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。