中文版 | English
题名

Point-aware Interaction and CNN-induced Refinement Network for RGB-D Salient Object Detection

作者
通讯作者Zhang, Chen
DOI
发表日期
2023-10-26
会议名称
31st ACM International Conference on Multimedia, MM 2023
ISBN
9798400701085
会议录名称
页码
406-416
会议日期
October 29, 2023 - November 3, 2023
会议地点
Ottawa, ON, Canada
会议录编者/会议主办者
ACM SIGMM
出版者
摘要
By integrating complementary information from RGB image and depth map, the ability of salient object detection (SOD) for complex and challenging scenes can be improved. In recent years, the important role of Convolutional Neural Networks (CNNs) in feature extraction and cross-modality interaction has been fully explored, but it is still insufficient in modeling global long-range dependencies of self-modality and cross-modality. To this end, we introduce CNNs-assisted Transformer architecture and propose a novel RGB-D SOD network with Point-aware Interaction and CNN-induced Refinement (PICR-Net). On the one hand, considering the prior correlation between RGB modality and depth modality, an attention-triggered cross-modality point-aware interaction (CmPI) module is designed to explore the feature interaction of different modalities with positional constraints. On the other hand, in order to alleviate the block effect and detail destruction problems brought by the Transformer naturally, we design a CNN-induced refinement (CNNR) unit for content refinement and supplementation. Extensive experiments on five RGB-D SOD datasets show that the proposed network achieves competitive results in both quantitative and qualitative comparisons. Our code is publicly available at: https://github.com/rmcong/PICR-Net-ACMMM23.
© 2023 ACM.
学校署名
其他
语种
英语
收录类别
资助项目
This work was supported in part by National Natural Science Foundation of China under Grant 61991411, in part by the Taishan Scholar Project of Shandong Province under Grant tsqn202306079, in part by Project for Self-Developed Innovation Team of Jinan City under Grant 2021GXRC038, in part by the National Natural Science Foundation of China under Grant 62002014, in part by the Hong Kong Innovation and Technology Commission (InnoHK Project CIMDA), in part by the Hong Kong GRF-RGC General Research Fund under Grant 11203820 (CityU 9042598), in part by Young Elite Scientist Sponsorship Program by the China Association for Science and Technology under Grant 2020QNRC001, and in part by CAAI-Huawei MindSpore Open Fund.
EI入藏号
20235015224823
EI主题词
Convolutional neural networks ; Network architecture ; Object detection ; Object recognition
EI分类号
Data Processing and Image Processing:723.2
来源库
EV Compendex
引用统计
被引频次[WOS]:9
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/706733
专题南方科技大学
作者单位
1.Beijing Jiaotong University, Beijing, China
2.Shandong University, Shandong, Jinan, China
3.Southern University of Science and Technology, Guangdong, Shenzhen, China
4.City University of Hong Kong, Hong Kong
5.The Key Laboratory of Machine Intelligence and System Control, Ministry of Education, Shandong, Jinan, China
6.Institute of Information Science, Beijing Jiaotong University, The Beijing Key Laboratory of Advanced Information Science and Network Technology, China
推荐引用方式
GB/T 7714
Cong, Runmin,Liu, Hongyu,Zhang, Chen,et al. Point-aware Interaction and CNN-induced Refinement Network for RGB-D Salient Object Detection[C]//ACM SIGMM:Association for Computing Machinery, Inc,2023:406-416.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cong, Runmin]的文章
[Liu, Hongyu]的文章
[Zhang, Chen]的文章
百度学术
百度学术中相似的文章
[Cong, Runmin]的文章
[Liu, Hongyu]的文章
[Zhang, Chen]的文章
必应学术
必应学术中相似的文章
[Cong, Runmin]的文章
[Liu, Hongyu]的文章
[Zhang, Chen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。