题名 | Spatio-Temporal Adaptive Embedding Makes Vanilla Transformer SOTA for Traffic Forecasting |
作者 | |
通讯作者 | Jiang, Renhe; Song, Xuan |
DOI | |
发表日期 | 2023
|
会议名称 | 32nd ACM International Conference on Information and Knowledge Management (CIKM)
|
会议录名称 | |
会议日期 | OCT 21-25, 2023
|
会议地点 | null,Birmingham,ENGLAND
|
出版地 | 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
|
出版者 | |
摘要 | With the rapid development of the Intelligent Transportation System (ITS), accurate traffic forecasting has emerged as a critical challenge. The key bottleneck lies in capturing the intricate spatio-temporal traffic patterns. In recent years, numerous neural networks with complicated architectures have been proposed to address this issue. However, the advancements in network architectures have encountered diminishing performance gains. In this study, we present a novel component called spatio-temporal adaptive embedding that can yield outstanding results with vanilla transformers. Our proposed Spatio-Temporal Adaptive Embedding transformer (STAEformer) achieves state-of-the-art performance on five real-world traffic forecasting datasets. Further experiments demonstrate that spatio-temporal adaptive embedding plays a crucial role in traffic forecasting by effectively capturing intrinsic spatio-temporal relations and chronological information in traffic time series. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Key Research and Development Program of China[2021YFB1714400]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Information Systems
|
WOS记录号 | WOS:001161549504033
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:69
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/706745 |
专题 | 南方科技大学 |
作者单位 | 1.Southern University of Science and Technology, China 2.The University of Tokyo, Japan 3.University of Technology, Sydney, Australia |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Liu, Hangchen,Dong, Zheng,Jiang, Renhe,et al. Spatio-Temporal Adaptive Embedding Makes Vanilla Transformer SOTA for Traffic Forecasting[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2023.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论