中文版 | English
题名

Perturbation-Based Two-Stage Multi-Domain Active Learning

作者
DOI
发表日期
2023
会议名称
32nd ACM International Conference on Information and Knowledge Management (CIKM)
会议录名称
会议日期
OCT 21-25, 2023
会议地点
null,Birmingham,ENGLAND
出版地
1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
出版者
摘要
In multi-domain learning (MDL) scenarios, high labeling effort is required due to the complexity of collecting data from various domains. Active Learning (AL) presents an encouraging solution to this issue by annotating a smaller number of highly informative instances, thereby reducing the labeling effort. Previous research has relied on conventional AL strategies for MDL scenarios, which underutilize the domain-shared information of each instance during the selection procedure. To mitigate this issue, we propose a novel perturbation-based two-stage multi-domain active learning (P2S-MDAL) method incorporated into the well-regarded ASP-MTL model. Specifically, P2S-MDAL involves allocating budgets for domains and establishing regions for diversity selection, which are further used to select the most cross-domain influential samples in each region. A perturbation metric has been introduced to evaluate the robustness of the shared feature extractor of the model, facilitating the identification of potentially cross-domain influential samples. Experiments are conducted on three real-world datasets, encompassing both texts and images. The superior performance over conventional AL strategies shows the effectiveness of the proposed strategy. Additionally, an ablation study has been carried out to demonstrate the validity of each component. Finally, we outline several intriguing potential directions for future MDAL research, thus catalyzing the field's advancement.
关键词
学校署名
第一
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Key Research and Development Program of China[2022YFA1004102]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Information Systems
WOS记录号
WOS:001161549503117
来源库
Web of Science
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/706754
专题南方科技大学
作者单位
1.Southern University of Science and Technology, Shenzhen, China
2.University of Birmingham, Birmingham, United Kingdom
3.The Hong Kong Polytechnic University Hong Kong, Southern University of Science and Technology, Shenzhen, China
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
He, Rui,He, Shan,Dai, Zeyu,et al. Perturbation-Based Two-Stage Multi-Domain Active Learning[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2023.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[He, Rui]的文章
[He, Shan]的文章
[Dai, Zeyu]的文章
百度学术
百度学术中相似的文章
[He, Rui]的文章
[He, Shan]的文章
[Dai, Zeyu]的文章
必应学术
必应学术中相似的文章
[He, Rui]的文章
[He, Shan]的文章
[Dai, Zeyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。