题名 | A Dynamic Codec with Adaptive Quantization for Convolution Neural Network |
作者 | |
通讯作者 | An, Fengwei |
DOI | |
发表日期 | 2023-10
|
会议名称 | 15th IEEE International Conference on ASIC, ASICON 2023
|
ISSN | 2162-7541
|
EISSN | 2162-755X
|
ISBN | 9798350312980
|
会议录名称 | |
页码 | 1-4
|
会议日期 | October 24, 2023 - October 27, 2023
|
会议地点 | Nanjing, China
|
会议录编者/会议主办者 | Fudan University; IEEE Beijing Section; Nanjing University; National IC Innovation Center
|
出版者 | |
摘要 | Current convolutional neural networks (CNN) have achieved a high inference accuracy by deeper architecture, generating a large amount of interlayer data. Limited to on-chip memory, massive feature maps significantly impact the performance of hardware platforms. In this paper, we propose a dynamic codec with adaptive quantization for compressing inlayer feature maps which efficiently reduces the memory storage. Discrete cosine transform (DCT) is utilized to concentrate essential information in the frequency domain while high-frequency components are compressed by adaptive quantization. The quantization tables are dynamically adjusted by the storage of the previous map and the number of the current layer to maintain a relatively high compression ratio and quality for each layer. In addition, Huffman coding and run length encoding (RLE) are used to code compressed data streams from 2-D to 1-D for storage. Furthermore, the codec is implemented on FPGA and synthesized in TSMC 28nm technology. It yields a reduction of on-chip memory by 44.17% and achieves an average compression ratio of 69.18% for feature maps at diverse depths in ResNet-50.
© 2023 IEEE. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
EI入藏号 | 20240715533195
|
来源库 | EV Compendex
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10395953 |
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/706838 |
专题 | 工学院_深港微电子学院 |
作者单位 | Southern University of Science and Technology, School of Microelectronics, Shenzhen, China |
第一作者单位 | 深港微电子学院 |
通讯作者单位 | 深港微电子学院 |
第一作者的第一单位 | 深港微电子学院 |
推荐引用方式 GB/T 7714 |
Ouyang, Yichen,Wang, Xianglong,Shi, Gang,et al. A Dynamic Codec with Adaptive Quantization for Convolution Neural Network[C]//Fudan University; IEEE Beijing Section; Nanjing University; National IC Innovation Center:IEEE Computer Society,2023:1-4.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论