中文版 | English
题名

A Dynamic Codec with Adaptive Quantization for Convolution Neural Network

作者
通讯作者An, Fengwei
DOI
发表日期
2023-10
会议名称
15th IEEE International Conference on ASIC, ASICON 2023
ISSN
2162-7541
EISSN
2162-755X
ISBN
9798350312980
会议录名称
页码
1-4
会议日期
October 24, 2023 - October 27, 2023
会议地点
Nanjing, China
会议录编者/会议主办者
Fudan University; IEEE Beijing Section; Nanjing University; National IC Innovation Center
出版者
摘要
Current convolutional neural networks (CNN) have achieved a high inference accuracy by deeper architecture, generating a large amount of interlayer data. Limited to on-chip memory, massive feature maps significantly impact the performance of hardware platforms. In this paper, we propose a dynamic codec with adaptive quantization for compressing inlayer feature maps which efficiently reduces the memory storage. Discrete cosine transform (DCT) is utilized to concentrate essential information in the frequency domain while high-frequency components are compressed by adaptive quantization. The quantization tables are dynamically adjusted by the storage of the previous map and the number of the current layer to maintain a relatively high compression ratio and quality for each layer. In addition, Huffman coding and run length encoding (RLE) are used to code compressed data streams from 2-D to 1-D for storage. Furthermore, the codec is implemented on FPGA and synthesized in TSMC 28nm technology. It yields a reduction of on-chip memory by 44.17% and achieves an average compression ratio of 69.18% for feature maps at diverse depths in ResNet-50.

© 2023 IEEE.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[IEEE记录]
收录类别
EI入藏号
20240715533195
来源库
EV Compendex
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10395953
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/706838
专题工学院_深港微电子学院
作者单位
Southern University of Science and Technology, School of Microelectronics, Shenzhen, China
第一作者单位深港微电子学院
通讯作者单位深港微电子学院
第一作者的第一单位深港微电子学院
推荐引用方式
GB/T 7714
Ouyang, Yichen,Wang, Xianglong,Shi, Gang,et al. A Dynamic Codec with Adaptive Quantization for Convolution Neural Network[C]//Fudan University; IEEE Beijing Section; Nanjing University; National IC Innovation Center:IEEE Computer Society,2023:1-4.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ouyang, Yichen]的文章
[Wang, Xianglong]的文章
[Shi, Gang]的文章
百度学术
百度学术中相似的文章
[Ouyang, Yichen]的文章
[Wang, Xianglong]的文章
[Shi, Gang]的文章
必应学术
必应学术中相似的文章
[Ouyang, Yichen]的文章
[Wang, Xianglong]的文章
[Shi, Gang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。