题名 | Self-Supervised Structure-Preserved Image Registration Framework for Multimodal Retinal Images |
作者 | |
通讯作者 | Hu, Yan |
DOI | |
发表日期 | 2023
|
会议名称 | 6th International Conference on Information Communication and Signal Processing, ICICSP 2023
|
ISSN | 2770-7911
|
ISBN | 9798350339994
|
会议录名称 | |
页码 | 134-138
|
会议日期 | September 23, 2023 - September 25, 2023
|
会议地点 | Xi'an, China
|
会议录编者/会议主办者 | IEEE; Northwestern Polytechnical University
|
出版者 | |
摘要 | Multi-modal image registration of ophthalmology images is vital for disease diagnosis and treatment plans. However, it is challenging as the divergences of image appearance, resolution, and different transformations among different modal images. Therefore, we propose an image registration framework for multimodal retinal images, which directly solves both rigid and deformable transformation. Considering the blood vessel should be consistent among different modal images, we propose a Structure-preserved registration network (SPR-Net) in the framework. Specifically, SPR-Net adopts structure-preserved modal transformation to provide generated multimodal images for the training of the registration network. We also propose a smooth loss function for the constraint of the predicted deformation field. Extensive experiments prove the effectiveness of our proposed registration framework. © 2023 IEEE. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | This work was supported in part by General Program of National Natural Science Foundation of China (82102189), Guangdong Basic and Applied Basic Research Foundation (2021A1515012195), Shenzhen Stable Support Plan Program (20220815111736001 and 20200925174052004).
|
EI入藏号 | 20240715548884
|
来源库 | EV Compendex
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10390687 |
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/706872 |
专题 | 南方科技大学 |
作者单位 | Southern University of Science and Technology, Computer Science and Engineering, Shenzhen, China |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Hu, Yan,Dong, Shuwen,Gong, Mingdao,et al. Self-Supervised Structure-Preserved Image Registration Framework for Multimodal Retinal Images[C]//IEEE; Northwestern Polytechnical University:Institute of Electrical and Electronics Engineers Inc.,2023:134-138.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论