中文版 | English
题名

A Study of Deep Learning Based Classification of Mandarin Vowels Using Spoken Speech EEG Signals

作者
通讯作者Cui, Wenyuan
DOI
发表日期
2023
会议名称
2023 IEEE International Conference on Signal Processing, Communications and Computing, ICSPCC 2023
ISSN
2375-8341
ISBN
9798350316728
会议录名称
页码
1-5
会议日期
November 14, 2023 - November 17, 2023
会议地点
No. 115 Jinshui Road, Zhengzhou, Henan, China
会议录编者/会议主办者
Henan University; IEEE Xi�an Section; Northwestern Polytechnical University
出版者
摘要
Brain computer interface (BCI) based on imagined speech provides an alternative access for human-computer interaction and can help patients who are unable to speak to communicate with the outside world. However, the complexity and variability of speech-related electroencephalographic (EEG) signal make decoding speech information from EEG signals a challenging task. This study aimed to explore feature extraction methods and classifiers that were suitable for speech-related EEG classification. Six feature extraction techniques and three classifiers were used to classify spoken speech EEG signals of four Mandarin vowels. The classification results showed that the accuracy reached 68.7% when using channel cross-covariance (CCV) with Riemannian manifolds as input features and deep convolutional neural network (Deep ConvNet) as the classifier, which was better than classification performance of other methods and previous studies. This study provides insights into the effectiveness of various feature extraction and classification methods in EEG-based speech classification. It suggests the potential of CCV combined with Riemannian manifold features and a Deep ConvNet based classifier for speech imagery studies.
© 2023 IEEE.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[IEEE记录]
收录类别
EI入藏号
20240715559782
EI主题词
Biomedical signal processing ; Brain computer interface ; Classification (of information) ; Deep neural networks ; Extraction ; Feature extraction ; Geometry ; Image classification ; Linguistics ; Medical computing ; Speech communication
EI分类号
Biomedical Engineering:461.1 ; Ergonomics and Human Factors Engineering:461.4 ; Medicine and Pharmacology:461.6 ; Information Theory and Signal Processing:716.1 ; Computer Peripheral Equipment:722.2 ; Data Processing and Image Processing:723.2 ; Computer Applications:723.5 ; Speech:751.5 ; Chemical Operations:802.3 ; Information Sources and Analysis:903.1 ; Mathematics:921
来源库
EV Compendex
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10400255
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/706959
专题南方科技大学
作者单位
1.Southern University of Science and Technology, Shenzhen, China
2.University of Macau, China
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Cui, Wenyuan,Wang, Xinyu,Li, Mingtao,et al. A Study of Deep Learning Based Classification of Mandarin Vowels Using Spoken Speech EEG Signals[C]//Henan University; IEEE Xi�an Section; Northwestern Polytechnical University:Institute of Electrical and Electronics Engineers Inc.,2023:1-5.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cui, Wenyuan]的文章
[Wang, Xinyu]的文章
[Li, Mingtao]的文章
百度学术
百度学术中相似的文章
[Cui, Wenyuan]的文章
[Wang, Xinyu]的文章
[Li, Mingtao]的文章
必应学术
必应学术中相似的文章
[Cui, Wenyuan]的文章
[Wang, Xinyu]的文章
[Li, Mingtao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。