中文版 | English
题名

Joint optimisation of feature selection and SVM parameters based on an improved fireworks algorithm

作者
通讯作者Shen, Xiaoning
发表日期
2023
DOI
发表期刊
ISSN
1742-7185
EISSN
1742-7193
卷号26期号:6页码:702-714
摘要
In order to reduce the redundant features and improve the accuracy in classification, an improved fireworks algorithm for joint optimisation of feature selection and SVM parameters is proposed. A new fitness evaluation method is designed, which can adjust the punishment degree adaptively with the increase of the number of selected features. A differential mutation operator is introduced to enhance the information interaction among fireworks and improve the local search ability of the fireworks algorithm. A fitness-based roulette wheel selection strategy is proposed to reduce the computational complexity of the selection operator. Three groups of comparisons on 14 UCI classification datasets with increasing scales validate the effectiveness of our strategies and the significance of joint optimisation. Experimental results show that the proposed algorithm can obtain a higher accuracy in classification with fewer features.
Copyright © 2023 Inderscience Enterprises Ltd.
关键词
相关链接[来源记录]
收录类别
EI ; ESCI
语种
英语
学校署名
其他
WOS研究方向
Computer Science
WOS类目
Computer Science, Interdisciplinary Applications
WOS记录号
WOS:001113876000008
出版者
EI入藏号
20235015227745
EI主题词
Classification (of information) ; Explosives ; Feature Selection ; Optimization ; Parameter estimation
EI分类号
Information Theory and Signal Processing:716.1 ; Computer Software, Data Handling and Applications:723 ; Information Sources and Analysis:903.1 ; Optimization Techniques:921.5
来源库
EV Compendex
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/706967
专题南方科技大学
作者单位
1.CICAEET, School of Automation, Nanjing University of Information Science and Technology, Nanjing; 210044, China
2.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen; 518055, China
推荐引用方式
GB/T 7714
Shen, Xiaoning,Xu, Jiyong,Mao, Mingjian,et al. Joint optimisation of feature selection and SVM parameters based on an improved fireworks algorithm[J]. International Journal of Computational Science and Engineering,2023,26(6):702-714.
APA
Shen, Xiaoning,Xu, Jiyong,Mao, Mingjian,Lu, Jiaqi,Song, Liyan,&Wang, Qian.(2023).Joint optimisation of feature selection and SVM parameters based on an improved fireworks algorithm.International Journal of Computational Science and Engineering,26(6),702-714.
MLA
Shen, Xiaoning,et al."Joint optimisation of feature selection and SVM parameters based on an improved fireworks algorithm".International Journal of Computational Science and Engineering 26.6(2023):702-714.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shen, Xiaoning]的文章
[Xu, Jiyong]的文章
[Mao, Mingjian]的文章
百度学术
百度学术中相似的文章
[Shen, Xiaoning]的文章
[Xu, Jiyong]的文章
[Mao, Mingjian]的文章
必应学术
必应学术中相似的文章
[Shen, Xiaoning]的文章
[Xu, Jiyong]的文章
[Mao, Mingjian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。