题名 | Joint optimisation of feature selection and SVM parameters based on an improved fireworks algorithm |
作者 | |
通讯作者 | Shen, Xiaoning |
发表日期 | 2023
|
DOI | |
发表期刊 | |
ISSN | 1742-7185
|
EISSN | 1742-7193
|
卷号 | 26期号:6页码:702-714 |
摘要 | In order to reduce the redundant features and improve the accuracy in classification, an improved fireworks algorithm for joint optimisation of feature selection and SVM parameters is proposed. A new fitness evaluation method is designed, which can adjust the punishment degree adaptively with the increase of the number of selected features. A differential mutation operator is introduced to enhance the information interaction among fireworks and improve the local search ability of the fireworks algorithm. A fitness-based roulette wheel selection strategy is proposed to reduce the computational complexity of the selection operator. Three groups of comparisons on 14 UCI classification datasets with increasing scales validate the effectiveness of our strategies and the significance of joint optimisation. Experimental results show that the proposed algorithm can obtain a higher accuracy in classification with fewer features. Copyright © 2023 Inderscience Enterprises Ltd. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Interdisciplinary Applications
|
WOS记录号 | WOS:001113876000008
|
出版者 | |
EI入藏号 | 20235015227745
|
EI主题词 | Classification (of information)
; Explosives
; Feature Selection
; Optimization
; Parameter estimation
|
EI分类号 | Information Theory and Signal Processing:716.1
; Computer Software, Data Handling and Applications:723
; Information Sources and Analysis:903.1
; Optimization Techniques:921.5
|
来源库 | EV Compendex
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/706967 |
专题 | 南方科技大学 |
作者单位 | 1.CICAEET, School of Automation, Nanjing University of Information Science and Technology, Nanjing; 210044, China 2.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen; 518055, China |
推荐引用方式 GB/T 7714 |
Shen, Xiaoning,Xu, Jiyong,Mao, Mingjian,et al. Joint optimisation of feature selection and SVM parameters based on an improved fireworks algorithm[J]. International Journal of Computational Science and Engineering,2023,26(6):702-714.
|
APA |
Shen, Xiaoning,Xu, Jiyong,Mao, Mingjian,Lu, Jiaqi,Song, Liyan,&Wang, Qian.(2023).Joint optimisation of feature selection and SVM parameters based on an improved fireworks algorithm.International Journal of Computational Science and Engineering,26(6),702-714.
|
MLA |
Shen, Xiaoning,et al."Joint optimisation of feature selection and SVM parameters based on an improved fireworks algorithm".International Journal of Computational Science and Engineering 26.6(2023):702-714.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论