中文版 | English
题名

A novel normalization method of transient electromagnetic data for efficient neural network training

作者
DOI
发表日期
2023
会议名称
29th European Meeting of Environmental and Engineering Geophysics, Held at Near Surface Geoscience Conference and Exhibition 2023, NSG 2023
ISBN
9789462824607
会议录名称
会议日期
September 3, 2023 - September 7, 2023
会议地点
Edinburgh, United kingdom
出版者
摘要
Groundwater and mineral resources play a crucial role in human society and have distinct geo-electrical properties in the subsurface. Transient Electromagnetic (TEM) method is effective in determining these properties, but its unique features, such as its dynamic range spanning orders of magnitude and the possibility of negative values, can challenge the optimization of neural networks and result in longer training times and lower accuracy. To address this challenge, we propose a novel normalization method to improve the information of TEM data for the training of neural networks. We apply our proposed method to an airborne TEM data forward modeling problem and show that it achieves high accuracy as compared to the commonly used normalization techniques, and improved computational efficiency as compared to numerical methods. The trained network can accelerate both deterministic and stochastic inversion schemes, enabling efficient modeling of large datasets.
© NSG 2023.All rights reserved.
学校署名
其他
语种
英语
收录类别
EI入藏号
20240415439162
EI主题词
Groundwater ; Groundwater resources ; Large dataset ; Mineral resources ; Neural networks ; Numerical methods ; Stochastic systems ; Transient analysis
EI分类号
Groundwater:444.2 ; Data Processing and Image Processing:723.2 ; Control Systems:731.1 ; Numerical Methods:921.6 ; Systems Science:961
来源库
EV Compendex
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/706997
专题南方科技大学
作者单位
1.Aarhus University, Denmark
2.China University of Geosciences, Wuhan, China
3.Southern University of Science and Technology, China
推荐引用方式
GB/T 7714
He, S.,Wang, Y.,Cai, H.,et al. A novel normalization method of transient electromagnetic data for efficient neural network training[C]:European Association of Geoscientists and Engineers, EAGE,2023.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[He, S.]的文章
[Wang, Y.]的文章
[Cai, H.]的文章
百度学术
百度学术中相似的文章
[He, S.]的文章
[Wang, Y.]的文章
[Cai, H.]的文章
必应学术
必应学术中相似的文章
[He, S.]的文章
[Wang, Y.]的文章
[Cai, H.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。