题名 | Ppgan: Privacy-preserving generative adversarial network |
作者 | |
DOI | |
发表日期 | 2019-12-01
|
ISSN | 1521-9097
|
ISBN | 978-1-7281-2584-8
|
会议录名称 | |
卷号 | 2019-December
|
页码 | 985-989
|
会议日期 | 4-6 Dec. 2019
|
会议地点 | Tianjin, China
|
出版地 | 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
|
出版者 | |
摘要 | Generative Adversarial Network (GAN) and its variants serve as a perfect representation of the data generation model, providing researchers with a large amount of high-quality generated data. They illustrate a promising direction for research with limited data availability. When GAN learns the semantic-rich data distribution from a dataset, the density of the generated distribution tends to concentrate on the training data. Due to the gradient parameters of the deep neural network contain the data distribution of the training samples, they can easily remember the training samples. When GAN is applied to private or sensitive data, for instance, patient medical records, as private information may be leakage. To address this issue, we propose a Privacy-preserving Generative Adversarial Network (PPGAN) model, in which we achieve differential privacy in GANs by adding well-designed noise to the gradient during the model learning procedure. Besides, we introduced the Moments Accountant strategy in the PPGAN training process to improve the stability and compatibility of the model by controlling privacy loss. We also give a mathematical proof of the differential privacy discriminator. Through extensive case studies of the benchmark datasets, we demonstrate that PPGAN can generate high-quality synthetic data while retaining the required data available under a reasonable privacy budget. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | Ministry of Education of China[201910212133]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Hardware & Architecture
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:000530854900141
|
EI入藏号 | 20200608137083
|
EI主题词 | Benchmarking
; Budget control
; Deep learning
; Sampling
; Semantics
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Telecommunication; Radar, Radio and Television:716
; Telephone Systems and Related Technologies; Line Communications:718
; Data Processing and Image Processing:723.2
; Artificial Intelligence:723.4
|
Scopus记录号 | 2-s2.0-85078950786
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8975823 |
引用统计 |
被引频次[WOS]:36
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/71318 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.School of Data Science and Technology,Heilongjiang University,China 2.Department of Computer Science and Engineering,Southern University of Science and Technology,China |
推荐引用方式 GB/T 7714 |
Liu,Yi,Peng,Jialiang,Yu,James J.Q.,et al. Ppgan: Privacy-preserving generative adversarial network[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE Computer Society,2019:985-989.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论