中文版 | English
题名

Ppgan: Privacy-preserving generative adversarial network

作者
DOI
发表日期
2019-12-01
ISSN
1521-9097
ISBN
978-1-7281-2584-8
会议录名称
卷号
2019-December
页码
985-989
会议日期
4-6 Dec. 2019
会议地点
Tianjin, China
出版地
10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
出版者
摘要
Generative Adversarial Network (GAN) and its variants serve as a perfect representation of the data generation model, providing researchers with a large amount of high-quality generated data. They illustrate a promising direction for research with limited data availability. When GAN learns the semantic-rich data distribution from a dataset, the density of the generated distribution tends to concentrate on the training data. Due to the gradient parameters of the deep neural network contain the data distribution of the training samples, they can easily remember the training samples. When GAN is applied to private or sensitive data, for instance, patient medical records, as private information may be leakage. To address this issue, we propose a Privacy-preserving Generative Adversarial Network (PPGAN) model, in which we achieve differential privacy in GANs by adding well-designed noise to the gradient during the model learning procedure. Besides, we introduced the Moments Accountant strategy in the PPGAN training process to improve the stability and compatibility of the model by controlling privacy loss. We also give a mathematical proof of the differential privacy discriminator. Through extensive case studies of the benchmark datasets, we demonstrate that PPGAN can generate high-quality synthetic data while retaining the required data available under a reasonable privacy budget.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Ministry of Education of China[201910212133]
WOS研究方向
Computer Science
WOS类目
Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods
WOS记录号
WOS:000530854900141
EI入藏号
20200608137083
EI主题词
Benchmarking ; Budget control ; Deep learning ; Sampling ; Semantics
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Telecommunication; Radar, Radio and Television:716 ; Telephone Systems and Related Technologies; Line Communications:718 ; Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4
Scopus记录号
2-s2.0-85078950786
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8975823
引用统计
被引频次[WOS]:36
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/71318
专题工学院_计算机科学与工程系
作者单位
1.School of Data Science and Technology,Heilongjiang University,China
2.Department of Computer Science and Engineering,Southern University of Science and Technology,China
推荐引用方式
GB/T 7714
Liu,Yi,Peng,Jialiang,Yu,James J.Q.,et al. Ppgan: Privacy-preserving generative adversarial network[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE Computer Society,2019:985-989.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu,Yi]的文章
[Peng,Jialiang]的文章
[Yu,James J.Q.]的文章
百度学术
百度学术中相似的文章
[Liu,Yi]的文章
[Peng,Jialiang]的文章
[Yu,James J.Q.]的文章
必应学术
必应学术中相似的文章
[Liu,Yi]的文章
[Peng,Jialiang]的文章
[Yu,James J.Q.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。