题名 | Online Traffic Speed Estimation for Urban Road Networks with Few Data: A Transfer Learning Approach |
作者 | |
通讯作者 | Yu,James J.Q. |
DOI | |
发表日期 | 2019-10-01
|
ISSN | 2153-0009
|
ISBN | 978-1-5386-7025-5
|
会议录名称 | |
页码 | 4024-4029
|
会议日期 | 27-30 Oct. 2019
|
会议地点 | 83 Symonds St, Grafton, Auckland, New zealand
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Online traffic speed data of urban road networks serve as the foundation of modern intelligent transportation systems. Much research has been conducted on developing methods, mostly model-based or machine learning ones, to estimate the data with GPS record for one, few adjacent roads, or the entire vehicular transportation network. While the machine learning methods generally yield satisfactory estimation accuracy, their accomplishments are established on a plethora of historical GPS records which may not be readily available for many urban transportation systems. In this paper, we investigate a transfer learning approach to provide speed data estimations with few data. We ground this work on a graph convolutional generative autoencoder that can generate the estimations for an entire transportation network in one go, and modify its internal computation graph to reduce the size of network topology-dependent model parameters. Subsequently, pre-trained models from road networks with massive historical data can be re-used in other networks with few data, which are only employed to adjust a small number of parameters. To assess the effectiveness of the proposed approach, comprehensive case studies are conducted, in which outstanding speed estimations can be obtained with significantly shorter training time. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
WOS研究方向 | Transportation
|
WOS类目 | Transportation Science & Technology
|
WOS记录号 | WOS:000521238104016
|
EI入藏号 | 20195207920391
|
EI主题词 | Data communication systems
; E-learning
; Intelligent systems
; Intelligent vehicle highway systems
; Machine learning
; Online systems
; Roads and streets
; Speed
; Topology
|
EI分类号 | Highway Systems:406.1
; Roads and Streets:406.2
; Highway Transportation:432
; Railroad Transportation:433
; Digital Computers and Systems:722.4
; Artificial Intelligence:723.4
; Computer Applications:723.5
; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
|
Scopus记录号 | 2-s2.0-85076804270
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8917502 |
引用统计 |
被引频次[WOS]:7
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/71319 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Southern University of Science and Technology,Department of Computer Science and Engineering,Shenzhen,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Yu,James J.Q.. Online Traffic Speed Estimation for Urban Road Networks with Few Data: A Transfer Learning Approach[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:4024-4029.
|
条目包含的文件 | 条目无相关文件。 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[Yu,James J.Q.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Yu,James J.Q.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Yu,James J.Q.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论