中文版 | English
题名

RECAP: Towards Precise Radiology Report Generation via Dynamic Disease Progression Reasoning

作者
发表日期
2023
会议名称
2023 Findings of the Association for Computational Linguistics: EMNLP 2023
ISBN
9798891760615
会议录名称
页码
2134-2147
会议日期
December 6, 2023 - December 10, 2023
会议地点
Singapore, Singapore
会议录编者/会议主办者
Apple; Colossal-AI; et al.; Google Research; GTCOM; King Salman Global Academy for Arabic Language
出版者
摘要
Automating radiology report generation can significantly alleviate radiologists' workloads. Previous research has primarily focused on realizing highly concise observations while neglecting the precise attributes that determine the severity of diseases (e.g., small pleural effusion). Since incorrect attributes will lead to imprecise radiology reports, strengthening the generation process with precise attribute modeling becomes necessary. Additionally, the temporal information contained in the historical records, which is crucial in evaluating a patient's current condition (e.g., heart size is unchanged), has also been largely disregarded. To address these issues, we propose RECAP, which generates precise and accurate radiology reports via dynamic disease progression reasoning. Specifically, RECAP first predicts the observations and progressions (i.e., spatiotemporal information) given two consecutive radiographs. It then combines the historical records, spatiotemporal information, and radiographs for report generation, where a disease progression graph and dynamic progression reasoning mechanism are devised to accurately select the attributes of each observation and progression. Extensive experiments on two publicly available datasets demonstrate the effectiveness of our model.
© 2023 Association for Computational Linguistics.
学校署名
其他
语种
英语
收录类别
资助项目
This work was supported in part by General Program of National Natural Science Foundation of China (Grant No. 82272086, 62076212), Guangdong Provincial Department of Education (Grant No. 2020ZDZX3043), Shenzhen Natural Science Fund (JCYJ20200109140820699 and the Stable Support Plan Program 20200925174052004), and the Research Grants Council of Hong Kong (15207920, 15207821, 15207122).
EI入藏号
20240515454234
EI主题词
Computational linguistics ; Radiography
EI分类号
Medicine and Pharmacology:461.6 ; Radioactive Material Applications:622.3 ; Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Imaging Techniques:746
来源库
EV Compendex
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/715187
专题工学院_斯发基斯可信自主研究院
工学院_计算机科学与工程系
作者单位
1.Department of Computing, The Hong Kong Polytechnic University, HKSAR, Hong Kong
2.Research Institute of Trustworthy Autonomous Systems, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
第一作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系
推荐引用方式
GB/T 7714
Hou, Wenjun,Cheng, Yi,Xu, Kaishuai,et al. RECAP: Towards Precise Radiology Report Generation via Dynamic Disease Progression Reasoning[C]//Apple; Colossal-AI; et al.; Google Research; GTCOM; King Salman Global Academy for Arabic Language:Association for Computational Linguistics (ACL),2023:2134-2147.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hou, Wenjun]的文章
[Cheng, Yi]的文章
[Xu, Kaishuai]的文章
百度学术
百度学术中相似的文章
[Hou, Wenjun]的文章
[Cheng, Yi]的文章
[Xu, Kaishuai]的文章
必应学术
必应学术中相似的文章
[Hou, Wenjun]的文章
[Cheng, Yi]的文章
[Xu, Kaishuai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。