中文版 | English
题名

PointGait: Boosting End-to-End 3D Gait Recognition with Point Clouds via Spatiotemporal Modeling

作者
DOI
发表日期
2023
会议名称
IEEE International Joint Conference on Biometrics (IJCB)
ISSN
2474-9680
会议录名称
会议日期
SEP 25-28, 2023
会议地点
null,Ljubljana,SLOVENIA
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
LiDAR is a new type of sensor used for gait recognition. Previous LiDAR-based state-of-the-art methods mostly exploit gait features from the depth maps generated by projecting point clouds in a 3D-to-2D manner, rather than directly using the raw 3D point data. However, these projection-based methods require an additional preprocessing step, which obstructs the universality of the method among different types of LiDARs. On the other hand, while existing point-based methods have achieved promising results in 3D object recognition, they have underperformed in 3D gait recognition, indicating the presence of a domain gap between coarse-grained 3D object classification and fine-grained 3D pedestrians recognition. By analyzing the success achieved by camera-based methods, we perceive that point-based gait recognition fails mainly because of neglecting to capture local representation. To address this issue, we propose an end-to-end 3D gait recognition framework named PointGait, which can directly capture informative gait features from point cloud data. Specifically, PointGait is a multi-stream model consisting of a Global and Local Gait Feature Extractor to extract holistic and fine-grained spatial features. Besides, a Personalized Motion Extractor is introduced to capture inter-frame motion features. Our experimental results on a LiDAR gait dataset, SUSTech1K, outperform all popular point-based methods, demonstrating the effectiveness and potential of our approach. In conclusion, the proposed PointGait promotes the development of point-based gait recognition by highlighting the importance of incorporating fine-grained spatiotemporal information.
学校署名
第一
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Natural Science Foundation of China[61976144] ; National Key Research and Development Program of China[2020AAA0140002]
WOS研究方向
Computer Science ; Imaging Science & Photographic Technology
WOS类目
Computer Science, Artificial Intelligence ; Imaging Science & Photographic Technology
WOS记录号
WOS:001180818700041
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/715191
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering, Southern University of Science and Technology
2.Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong
3.Research Institute of Trustworthy Autonomous System, Southern University of Science and Technology
4.Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University
5.WeBank Institute of Financial Technology, Shenzhen Audencia Financial Technology Institute, Shenzhen University
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Rui Wang,Chuanfu Shen,Chao Fan,et al. PointGait: Boosting End-to-End 3D Gait Recognition with Point Clouds via Spatiotemporal Modeling[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
2023_IJCB_RuiWang.pd(779KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Rui Wang]的文章
[Chuanfu Shen]的文章
[Chao Fan]的文章
百度学术
百度学术中相似的文章
[Rui Wang]的文章
[Chuanfu Shen]的文章
[Chao Fan]的文章
必应学术
必应学术中相似的文章
[Rui Wang]的文章
[Chuanfu Shen]的文章
[Chao Fan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。