题名 | PointGait: Boosting End-to-End 3D Gait Recognition with Point Clouds via Spatiotemporal Modeling |
作者 | |
DOI | |
发表日期 | 2023
|
会议名称 | IEEE International Joint Conference on Biometrics (IJCB)
|
ISSN | 2474-9680
|
会议录名称 | |
会议日期 | SEP 25-28, 2023
|
会议地点 | null,Ljubljana,SLOVENIA
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | LiDAR is a new type of sensor used for gait recognition. Previous LiDAR-based state-of-the-art methods mostly exploit gait features from the depth maps generated by projecting point clouds in a 3D-to-2D manner, rather than directly using the raw 3D point data. However, these projection-based methods require an additional preprocessing step, which obstructs the universality of the method among different types of LiDARs. On the other hand, while existing point-based methods have achieved promising results in 3D object recognition, they have underperformed in 3D gait recognition, indicating the presence of a domain gap between coarse-grained 3D object classification and fine-grained 3D pedestrians recognition. By analyzing the success achieved by camera-based methods, we perceive that point-based gait recognition fails mainly because of neglecting to capture local representation. To address this issue, we propose an end-to-end 3D gait recognition framework named PointGait, which can directly capture informative gait features from point cloud data. Specifically, PointGait is a multi-stream model consisting of a Global and Local Gait Feature Extractor to extract holistic and fine-grained spatial features. Besides, a Personalized Motion Extractor is introduced to capture inter-frame motion features. Our experimental results on a LiDAR gait dataset, SUSTech1K, outperform all popular point-based methods, demonstrating the effectiveness and potential of our approach. In conclusion, the proposed PointGait promotes the development of point-based gait recognition by highlighting the importance of incorporating fine-grained spatiotemporal information. |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[61976144]
; National Key Research and Development Program of China[2020AAA0140002]
|
WOS研究方向 | Computer Science
; Imaging Science & Photographic Technology
|
WOS类目 | Computer Science, Artificial Intelligence
; Imaging Science & Photographic Technology
|
WOS记录号 | WOS:001180818700041
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/715191 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Department of Computer Science and Engineering, Southern University of Science and Technology 2.Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong 3.Research Institute of Trustworthy Autonomous System, Southern University of Science and Technology 4.Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University 5.WeBank Institute of Financial Technology, Shenzhen Audencia Financial Technology Institute, Shenzhen University |
第一作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Rui Wang,Chuanfu Shen,Chao Fan,et al. PointGait: Boosting End-to-End 3D Gait Recognition with Point Clouds via Spatiotemporal Modeling[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
2023_IJCB_RuiWang.pd(779KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论