中文版 | English
题名

Saliency-aware regularized graph neural network

作者
通讯作者Wang,Xiangrong
发表日期
2024-03-01
DOI
发表期刊
ISSN
0004-3702
卷号328
摘要
The crux of graph classification lies in the effective representation learning for the entire graph. Typical graph neural networks focus on modeling the local dependencies when aggregating features of neighboring nodes, and obtain the representation for the entire graph by aggregating node features. Such methods have two potential limitations: 1) the global node saliency w.r.t. graph classification is not explicitly modeled, which is crucial since different nodes may have different semantic relevance to graph classification; 2) the graph representation directly aggregated from node features may have limited effectiveness to reflect graph-level information. In this work, we propose the Saliency-Aware Regularized Graph Neural Network (SAR-GNN) for graph classification, which consists of two core modules: 1) a traditional graph neural network serving as the backbone for learning node features and 2) the Graph Neural Memory designed to distill a compact graph representation from node features of the backbone. We first estimate the global node saliency by measuring the semantic similarity between the compact graph representation and node features. Then the learned saliency distribution is leveraged to regularize the neighborhood aggregation of the backbone, which facilitates the message passing of features for salient nodes and suppresses the less relevant nodes. Thus, our model can learn more effective graph representation. We demonstrate the merits of SAR-GNN by extensive experiments on seven datasets across various types of graph data.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85184995608
来源库
Scopus
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/715446
专题未来网络研究院
作者单位
1.Department of Computer Science,Harbin Institute of Technology at Shenzhen,Shenzhen,518172,China
2.Institute of Future Networks,Southern University of Science and Technology,Shenzhen,518055,China
3.College of Mechatronics and Control Engineering,Shenzhen University,Shenzhen,518060,China
4.Peng Cheng Laboratory,Shenzhen,518066,China
推荐引用方式
GB/T 7714
Pei,Wenjie,Xu,Wei Na,Wu,Zongze,et al. Saliency-aware regularized graph neural network[J]. Artificial Intelligence,2024,328.
APA
Pei,Wenjie.,Xu,Wei Na.,Wu,Zongze.,Li,Weichao.,Wang,Jinfan.,...&Wang,Xiangrong.(2024).Saliency-aware regularized graph neural network.Artificial Intelligence,328.
MLA
Pei,Wenjie,et al."Saliency-aware regularized graph neural network".Artificial Intelligence 328(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Pei,Wenjie]的文章
[Xu,Wei Na]的文章
[Wu,Zongze]的文章
百度学术
百度学术中相似的文章
[Pei,Wenjie]的文章
[Xu,Wei Na]的文章
[Wu,Zongze]的文章
必应学术
必应学术中相似的文章
[Pei,Wenjie]的文章
[Xu,Wei Na]的文章
[Wu,Zongze]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。